Câu hỏi:

13/07/2024 4,021

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M, N lần lượt là trung điểm của AB, CD. (P) là mặt phẳng đi qua MN và song song với mặt phẳng (SAD). Tìm giao tuyến của các mặt của hình chóp với mặt phẳng (P).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M, N lần lượt là trung điểm của AB, CD. (P) là mặt phẳng đi qua MN và song song với mặt phẳng (SAD). Tìm giao tuyến của các mặt của hình chóp với mặt phẳng (P). (ảnh 1)

Do M, N lần lượt là trung điểm của AB, CD nên MN // BC // AD.

Mà AD (SAD) nên MN // (SAD).

Gọi E là trung điểm của SC.

Xét ∆SCD có N, E lần lượt là trung điểm của CD, SC nên NE là đường trung bình của tam giác, suy ra NE // SD.

Mà SD (SAD) nên NE // (SAD).

Ta có: MN // (SAD);

           NE // (SAD);

           MN ∩ NE = N trong (MNE).

Do đó (MNE) // (SAD).

Khi đó (MNE) chính là mặt phẳng (P).

Gọi F là trung điểm của SB, tương tự ta cũng có (MNEF) là mặt phẳng (P).

Vậy, (P) ∩ (ABCD) = MN với MN // BC // AD.

(P) ∩ (SAB) = MF với MF // SA (F là trung điểm của SB).

(P) ∩ (SDC) = NE với NE // SD (E là trung điểm của SC).

(P) ∩ (SBC) = EF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SACD.

a) Chứng minh (OMN) // (SBC).

Xem đáp án » 13/07/2024 50,566

Câu 2:

Cho hình chóp S.ABCD có đáy là hình thang ABCD, AD // BC, AD = 2BC. Gọi E, F, I lần lượt là trung điểm của các cạnh SA, AD, SD.

a) Chứng minh: (BEF) // (SCD)CI // (BEF).

Xem đáp án » 13/07/2024 14,340

Câu 3:

b) Giả sử hai tam giác SADSAB là các tam giác cân tại A. Gọi AEAF lần lượt là đường phân giác trong của hai tam giác SADSAB. Chứng minh EF // (SBD).

Xem đáp án » 13/07/2024 2,508

Câu 4:

c) Tìm giao điểm K của FI với giao tuyến vừa tìm được ở câu b, từ đó chứng minh (SBF) // (KCD).

Xem đáp án » 13/07/2024 1,733

Câu 5:

b) Tìm giao tuyến của hai mặt phẳng (SBC)(SAD).

Xem đáp án » 13/07/2024 1,613

Câu 6:

Cho hình hộp ABCD.A’B’C’D’. Chứng minh:

a) (BDA’) // (B’D’C).

Xem đáp án » 13/07/2024 920

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store