Câu hỏi:

13/07/2024 3,023

b) Giả sử hai tam giác SADSAB là các tam giác cân tại A. Gọi AEAF lần lượt là đường phân giác trong của hai tam giác SADSAB. Chứng minh EF // (SBD).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Ta có hai tam giác SADSAB là các tam giác cân tại A, suy ra AEAF vừa là

phân giác vừa là đường trung tuyến lần lượt của hai tam giác SADSAB, suy ra E F lần lượt là trung điểm của SDSB.

Suy ra EF là đường trung bình của tam giác SDB nên EF // BD

Mà BD (SBD)

Suy ra EF // (SBD).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và CD. a) Chứng minh (OMN) // (SBC). (ảnh 1)

a) • Xét ∆SAC có: M, O lần lượt là trung điểm của SA, AC nên MO là đường trung bình của tam giác SAC, suy ra MO // SC.

Mà SC (SCB), suy ra MO // (SCB).

• Xét ∆DCB có: N, O lần lượt là trung điểm của CD, BD nên NO là đường trung bình của tam giác DCB, suy ra NO // BC

Mà BC (SBC), suy ra NO // (SCB).

Ta có: MO // (SCB);

           NO // (SCB);

           MO, NO (OMN); MO ∩ NO = O.

Vậy (OMN) // (SBC).

Lời giải

Cho hình chóp S.ABCD có đáy là hình thang ABCD, AD // BC, AD = 2BC. Gọi E, F, I lần lượt là trung điểm của các cạnh SA, AD, SD. a) Chứng minh: (BEF) // (SCD) và CI // (BEF). (ảnh 1)

a) • Xét ∆SAD có E, F lần lượt là trung điểm của các cạnh SA, AD nên EF là đường trung bình của tam giác SAD, suy ra EF // SD.

Mà SD (SCD), suy ra EF // (SCD).

Ta có F là trung điểm của AD nên  AF=FD=12AD,

Mà AD = 2BC hay  BC=12AD nên BC = AF = FD.

Lại có BC // AD hay BC // FD

Do đó tứ giác BFDC là hình bình hành nên BF // CD

CD (SCD)

Suy ra BF // (SCD).

Ta có: EF // (SCD);

           BF // (SCD);

           EF ∩ BF = F trong (BEF).

Suy ra (BEF) // (SCD).

Xét ∆SAD có: E, I lần lượt là trung điểm của SA, SD

Suy ra EI là đường trung bình của ∆SAD, do đó EI // AD và EI=12AD

Mà AD // BC và BC=12AD

Suy ra EI // BC  EI=BC=12AD

Do đó tứ giác EICB là hình bình hành nên CI // BE.

Mặt khác BE (BEF), suy ra CI // (BEF).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay