Câu hỏi:

12/07/2024 862

Gọi O được gọi là tâm đối xứng quay bậc n (n ∈ ℕ*) của hình ℋ nếu sau khi thực hiện phép quay QO,360°n ta lại được chính hình ℋ. Hình có tâm đối xứng quay bậc n gọi là hình đối xứng quay bậc n. Tìm các hình đối xứng quay trong Hình 2.

Gọi O được gọi là tâm đối xứng quay bậc n (n ∈ ℕ*) của hình ℋ nếu sau khi thực hiện phép quay   ta lại được chính hình ℋ. Hình có tâm đối xứng quay bậc n gọi là hình đối xứng quay bậc n. Tìm các hình đối xứng quay trong Hình 2. (ảnh 1)360°n=120°

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta đặt tên cho các hình vẽ trong Hình 2 theo thứ tự từ trái qua phải, từ trên xuống dưới là: a, b, c, d, e, f, g, h.

⦁ Xét Hình 2a: biển báo có dạng hình tam giác đều.

Gọi O được gọi là tâm đối xứng quay bậc n (n ∈ ℕ*) của hình ℋ nếu sau khi thực hiện phép quay   ta lại được chính hình ℋ. Hình có tâm đối xứng quay bậc n gọi là hình đối xứng quay bậc n. Tìm các hình đối xứng quay trong Hình 2. (ảnh 2)

Gọi O là tâm đường tròn ngoại tiếp tam giác, điểm A là một đỉnh của tam giác.

Phép quay tâm O, góc quay 120° biến điểm A thành điểm A’.

Khi đó ta thấy điểm A’ nằm trên Hình 2a ban đầu.

Tương tự, ta chọn các điểm khác bất kì trên Hình 2a.

Khi đó qua phép quay tâm O, góc quay 120°, ta cũng xác định được ảnh của các điểm đó trên Hình 2a ban đầu.

Vì vậy phép quay biến Hình 2a thành chính nó là phép quay tâm O, góc quay 120°.

Ta có 360°n=120°. Suy ra n = 3 ∈ ℕ*.

Vì vậy Hình 2a có tâm đối xứng quay bậc 3.

⦁ Xét Hình 2b: có dạng hình vuông.

Gọi O được gọi là tâm đối xứng quay bậc n (n ∈ ℕ*) của hình ℋ nếu sau khi thực hiện phép quay   ta lại được chính hình ℋ. Hình có tâm đối xứng quay bậc n gọi là hình đối xứng quay bậc n. Tìm các hình đối xứng quay trong Hình 2. (ảnh 3)

Gọi O là tâm hình vuông và B là một đỉnh của hình vuông.

Phép quay tâm O, góc quay 90° biến điểm B thành điểm B’.

Khi đó ta thấy điểm B’ nằm trên Hình 2b ban đầu.

Tương tự, ta chọn các điểm khác bất kì trên Hình 2b.

Khi đó qua phép quay tâm O, góc quay 90°, ta cũng xác định được ảnh của các điểm đó trên Hình 2b ban đầu.

Vì vậy phép quay biến Hình 2b thành chính nó là phép quay tâm O, góc quay 90°.

Ta có 360°n=90°. Suy ra n = 4 ∈ ℕ*.

Vì vậy Hình 2b có tâm đối xứng quay bậc 4.

⦁ Xét Hình 2c:

Gọi O được gọi là tâm đối xứng quay bậc n (n ∈ ℕ*) của hình ℋ nếu sau khi thực hiện phép quay   ta lại được chính hình ℋ. Hình có tâm đối xứng quay bậc n gọi là hình đối xứng quay bậc n. Tìm các hình đối xứng quay trong Hình 2. (ảnh 4)

Chọn hai điểm O, C như hình vẽ.

Phép quay tâm O, góc quay 72° biến điểm C thành điểm C’.

Khi đó ta thấy điểm C’ nằm trên Hình 2c ban đầu.

Tương tự, ta chọn các điểm khác bất kì trên Hình 2c.

Khi đó qua phép quay tâm O, góc quay 72°, ta cũng xác định được ảnh của các điểm đó trên Hình 2c ban đầu.

Vì vậy phép quay biến Hình 2c thành chính nó là phép quay tâm O, góc quay 72°.

Ta có 360°n=72°. Suy ra n = 5 ∈ ℕ*.

Vì vậy Hình 2c có tâm đối xứng quay bậc 5.

⦁ Xét Hình 2d: có dạng hình vuông

Gọi O được gọi là tâm đối xứng quay bậc n (n ∈ ℕ*) của hình ℋ nếu sau khi thực hiện phép quay   ta lại được chính hình ℋ. Hình có tâm đối xứng quay bậc n gọi là hình đối xứng quay bậc n. Tìm các hình đối xứng quay trong Hình 2. (ảnh 5)

Gọi O là tâm hình vuông. Chọn điểm D như hình vẽ.

Phép quay tâm O, góc quay 60° biến điểm D thành điểm D’.

Khi đó ta thấy điểm D’ nằm trên Hình 2d ban đầu.

Tương tự, ta chọn các điểm khác bất kì trên Hình 2d.

Khi đó qua phép quay tâm O, góc quay 60°, ta cũng xác định được ảnh của các điểm đó trên Hình 2d ban đầu.

Vì vậy phép quay biến Hình 2d thành chính nó là phép quay tâm O, góc quay 60°.

Ta có 360°n=60°. Suy ra n = 6 ∈ ℕ*.

Vì vậy Hình 2d có tâm đối xứng quay bậc 6.

⦁ Xét Hình 2e: có dạng hình vuông.

Gọi O được gọi là tâm đối xứng quay bậc n (n ∈ ℕ*) của hình ℋ nếu sau khi thực hiện phép quay   ta lại được chính hình ℋ. Hình có tâm đối xứng quay bậc n gọi là hình đối xứng quay bậc n. Tìm các hình đối xứng quay trong Hình 2. (ảnh 6)

Gọi O là tâm hình vuông. Chọn điểm E như hình vẽ.

Phép quay tâm O, góc quay 180° biến điểm E thành điểm E’.

Khi đó ta thấy điểm E’ nằm trên Hình 2e ban đầu.

Tương tự, ta chọn các điểm khác bất kì trên Hình 2e.

Khi đó qua phép quay tâm O, góc quay 180°, ta cũng xác định được ảnh của các điểm đó trên Hình 2e ban đầu.

Vì vậy phép quay biến Hình 2e thành chính nó là phép quay tâm O, góc quay 180°.

Ta có 360°n=180°. Suy ra n = 2 ∈ ℕ*.

Vì vậy Hình 2e có tâm đối xứng quay bậc 2.

⦁ Xét Hình 2f:

Gọi O được gọi là tâm đối xứng quay bậc n (n ∈ ℕ*) của hình ℋ nếu sau khi thực hiện phép quay   ta lại được chính hình ℋ. Hình có tâm đối xứng quay bậc n gọi là hình đối xứng quay bậc n. Tìm các hình đối xứng quay trong Hình 2. (ảnh 7)

Chọn hai điểm O, F như hình vẽ.

Phép quay tâm O, góc quay 120° biến điểm F thành điểm F’.

Khi đó ta thấy điểm F’ nằm trên Hình 2f ban đầu.

Tương tự, ta chọn các điểm khác bất kì trên Hình 2f.

Khi đó qua phép quay tâm O, góc quay 120°, ta cũng xác định được ảnh của các điểm đó trên Hình 2f ban đầu.

Vì vậy phép quay biến Hình 2f thành chính nó là phép quay tâm O, góc quay 120°.

Ta có 360°n=120°. Suy ra n = 3 ∈ ℕ*.

Vì vậy Hình 2f có tâm đối xứng quay bậc 3.

⦁ Xét Hình 2g: có dạng hình vuông.

Gọi O được gọi là tâm đối xứng quay bậc n (n ∈ ℕ*) của hình ℋ nếu sau khi thực hiện phép quay   ta lại được chính hình ℋ. Hình có tâm đối xứng quay bậc n gọi là hình đối xứng quay bậc n. Tìm các hình đối xứng quay trong Hình 2. (ảnh 8)

Gọi O là tâm hình vuông. Chọn điểm G như hình vẽ.

Phép quay tâm O, góc quay 90° biến điểm G thành điểm G’.

Khi đó ta thấy điểm G’ nằm trên Hình 2g ban đầu.

Tương tự, ta chọn các điểm khác bất kì trên Hình 2g.

Khi đó qua phép quay tâm O, góc quay 90°, ta cũng xác định được ảnh của các điểm đó trên Hình 2g ban đầu.

Vì vậy phép quay biến Hình 2g thành chính nó là phép quay tâm O, góc quay 90°.

Ta có 360°n=90°. Suy ra n = 4 ∈ ℕ*.

Vì vậy Hình 2g có tâm đối xứng quay bậc 4.

⦁ Xét Hình 2h: có dạng hình tròn

Gọi O được gọi là tâm đối xứng quay bậc n (n ∈ ℕ*) của hình ℋ nếu sau khi thực hiện phép quay   ta lại được chính hình ℋ. Hình có tâm đối xứng quay bậc n gọi là hình đối xứng quay bậc n. Tìm các hình đối xứng quay trong Hình 2. (ảnh 9)

Gọi O là tâm hình tròn. Chọn điểm H như hình vẽ.

Phép quay tâm O, góc quay 72° biến điểm H thành điểm H’.

Khi đó ta thấy điểm H’ nằm trên Hình 2h ban đầu.

Tương tự, ta chọn các điểm khác bất kì trên Hình 2h.

Khi đó qua phép quay tâm O, góc quay 72°, ta cũng xác định được ảnh của các điểm đó trên Hình 2h ban đầu.

Vì vậy phép quay biến Hình 2h thành chính nó là phép quay tâm O, góc quay 72°.

Ta có 360°n=72°. Suy ra n = 5 ∈ ℕ*.

Vì vậy Hình 2h có tâm đối xứng quay bậc 5.

Vậy tất cả các hình trong Hình 2 đều là hình đối xứng quay có bậc lần lượt là 3; 4; 5; 6; 2; 3; 4; 5 (tính thứ tự các hình từ trái qua phải và từ trên xuống dưới).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng tọa độ Oxy, qua phép đối xứng trục Oy, điểm A(3; 5) biến thành điểm nào trong các điểm sau?

A. (3; 5).

B. (–3; 5).

C. (3; –5).

D. (–3; –5).

Xem đáp án » 13/07/2024 1,542

Câu 2:

Hình gồm hai đường tròn phân biệt có cùng bán kính có bao nhiêu tâm đối xứng?

A. Không có.

B. Một.

C. Hai.

D. Vô số.

Xem đáp án » 13/07/2024 1,005

Câu 3:

Cho ba đường tròn có bán kính bằng nhau và đôi một tiếp xúc ngoài với nhau tạo thành hình . Hỏi có mấy trục đối xứng?

A. 0.

B. 1.

C. 2.

D. 3.

Xem đáp án » 13/07/2024 994

Câu 4:

Cho đường thẳng d: x + y + 2 = 0, đường tròn (C): x2 + y2 – 4x + 8y – 5 = 0.

a) Tìm ảnh của d qua phép đối xứng trục Ox.

b) Tìm ảnh của (C) qua phép đối xứng trục Oy.

Xem đáp án » 22/07/2023 780

Câu 5:

Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: x + 6y – 5 = 0.

a) Tìm ảnh của đường thẳng d qua phép đối xứng tâm O.

b) Tìm ảnh của đường thẳng d qua phép đối xứng tâm M(4; 6).

Xem đáp án » 12/07/2024 704

Câu 6:

Trong mặt phẳng tọa độ Oxy, cho M(3; 2), N(2; 0).

a) Tìm ảnh của các điểm M, N qua phép vị tự tâm I(–1; –1) tỉ số k = –2.

b) Tìm ảnh của các điểm M, N qua phép vị tự tâm O tỉ số k = 3.

Xem đáp án » 12/07/2024 692

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn