Câu hỏi:
13/07/2024 3,768Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, BC. Chứng minh rằng bốn điểm M, N, C, D không cùng nằm trong một mặt phẳng.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Giả sử bốn điểm M, N, C, D cùng thuộc một mặt phẳng.
Khi đó, M ∈ (NCD) nên M ∈ (BCD).
Như vậy, BM ⊂ (BCD), mà M ∈ AB nên A ∈ (BCD). Mâu thuẫn với giả thiết ABCD là tứ diện.
Vậy bốn điểm M, N, C, D không cùng nằm trong một mặt phẳng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh SA, BC, CD.
a) Xác định giao điểm của đường thẳng NP với mặt phẳng (SAB).
b) Xác định giao tuyến của mặt phẳng (MNP) với các mặt phẳng (SAB), (SAD), (SBC), (SCD).
Câu 2:
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh SA, SB, SC.
a) Xác định giao điểm I của đường thẳng MP với mặt phẳng (SBD).
b) Xác định giao điểm Q của đường thẳng SD với mặt phẳng (MNP).
Câu 3:
Cho hình tứ diện ABCD. Giao tuyến của hai mặt phẳng (ABC) và (CDA) là đường thẳng:
A. AB.
B. BD.
C. CD.
D. AC.
Câu 4:
Cho hình chóp tứ giác S.ABCD có đáy không là hình thang. Gọi O là giao điểm của AC và BD. Trên SO lấy điểm I sao cho SI = 2IO.
a) Xác định các giao điểm M, N lần lượt của SA, SD với mặt phẳng (IBC).
b*) Chứng minh rằng các đường thẳng AD, BC và MN đồng quy.
Câu 5:
Cho tứ diện ABCD. Trên các cạnh AC, CD lần lượt lấy các điểm E, F sao cho CE = 3EA, DF = 2FC.
a) Xác định giao tuyến của mặt phẳng (BEF) với các mặt phẳng (ABC), (ACD), (BCD).
b) Xác định giao điểm K của đường thẳng AD với mặt phẳng (BEF).
c) Xác định giao tuyến của hai mặt phẳng (BEF) và (ABD).
Câu 6:
Cho hai mặt phẳng (P), (Q) cắt nhau theo giao tuyến d và hai đường thẳng a, b lần lượt nằm trong (P), (Q). Chứng minh rằng nếu hai đường thẳng a, b cắt nhau thì giao điểm của chúng thuộc đường thẳng d.
về câu hỏi!