Câu hỏi:

13/07/2024 3,947

Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Khẳng định nào sau đây là đúng?

A. (ADF) // (BCE).

B. AD // (BEF).

C. (ABC) // (DEF).

D. EC // (ABD).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Khẳng định nào sau đây là đúng?  A. (ADF) // (BCE).  B. AD // (BEF).  C. (ABC) // (DEF).  D. EC // (ABD).  (ảnh 1)

+ Ta có AF // BE (ABEF là hình bình hành), mà BE (BCE) nên AF // (BCE).

Lại có AD // BC (ABCD là hình bình hành), mà BC (BCE) nên AD // (BCE).

Mà AF và AD cắt nhau trong mặt phẳng (ADF) nên (ADF) // (BCE). Vậy đáp án A đúng.

+ Vì AD ∩ (BEF) = A nên đáp án B sai.

+ Vì (ABC) ∩ (DEF) = CD nên đáp án C sai.

+ Vì EC ∩ (ABD) = C nên đáp án D sai.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Theo hệ quả của định lí về tính chất của hai mặt phẳng song song: Nếu đường thẳng a song song với mặt phẳng (P) thì có duy nhất một mặt phẳng chứa a và song song với (P).

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AD. Gọi M là trọng tâm của tam giác SAD, N là điểm thuộc đoạn thẳng AC sao cho AN =  AC, P là điểm thuộc đoạn thẳng CD sao cho DP =  DC. Chứng minh rằng (MNP) // (SBC).  (ảnh 1)

Gọi E là trung điểm của AD và I là giao điểm của NP và EC.

Ta có ANAC=DPDC=13 nên NP // AD.

Do AD // BC (ABCD là hình thang có AD là đáy) nên NP // BC.

Mà BC ⊂ (SBC). Suy ra NP // (SBC). (1)

Vì NP // AD nên ta có EIEC=ANAC=13.

Do M là trọng tâm của tam giác SAD và E trung điểm của đoạn AD nên M ∈ SE và EMES=13.

Như vậy EIEC=EMES nên MI // SC.

Mà SC ⊂ (SBC). Suy ra MI // (SBC). (2)

Lại có MI và NP là hai đường thẳng cắt nhau tại I trong mặt phẳng (MNP). (3)

Từ (1), (2) và (3) suy ra (MNP) // (SBC).

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay