Câu hỏi:

13/07/2024 3,847

Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Trên các đường chéo AC, BF lần lượt lấy các điểm M, N sao cho AMAC=BNBF. Qua M vẽ đường thẳng song song với AB cắt AD tại M', qua N vẽ đường thẳng song song với AB cắt AF tại N'.

a) Chứng minh rằng (MNN') // (CDE).

b) Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Mặt phẳng (P) cắt đường thẳng EF tại I. Tính FIFE, biết AMAC=13.

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Trên các đường chéo AC, BF lần lượt lấy các điểm M, N sao cho  . Qua M vẽ đường thẳng song song với AB cắt AD tại M', qua N vẽ đường thẳng song song với AB cắt AF tại N'.  a) Chứng minh rằng (MNN') // (CDE).  b) Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Mặt phẳng (P) cắt đường thẳng EF tại I. Tính  , biết  . (ảnh 1)

a) Ta có MM' // AB và NN' // AB (theo đề bài) nên MM' // NN'.

Suy ra M, M', N', N cùng thuộc một mặt phẳng. (1)

Ta có CD // AB (do ABCD là hình bình hành) và EF // AB (do ABEF là hình bình hành) nên CD // EF, suy ra C, D, F, E cùng thuộc một mặt phẳng.

Do AB // CD nên MM' // CD, mà CD ⊂ (CDE), suy ra MM' // (CDE). (2)

Theo định lí Thalés trong tam giác ACD, ta có AMAC=AM'AD (MM' // CD).

Tương tự, trong tam giác AFB có BNBF=AN'AF (NN' // AB).

AMAC=BNBF (theo đề bài). Do đó, AM'AD=AN'AF, từ đó suy ra M'N' // DF.

Mà DF ⊂ (CDE) (do C, D, F, E cùng thuộc một mặt phẳng) nên M'N' // (CDE). (3)

Từ (2) và (3) suy ra (MM'N') // (CDE). (4)

Từ (1) và (4) suy ra (MNN') // (CDE).

b) Ta có AF // BE và AD // BC, từ đó suy ra (ADF) // (BCE).

Khi đó đường thẳng AC cắt ba mặt phẳng song song (ADF), (P), (BCE) lần lượt tại A, M, C; đường thẳng FE cũng cắt ba mặt phẳng trên theo thứ tự tại F, I, E.

Áp dụng định lí Thalés trong không gian, ta có: AMFI=MCIE=ACFE.

Suy ra FIFE=AMAC. Mà AMAC=13 nên FIFE=13.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AD. Gọi M là trọng tâm của tam giác SAD, N là điểm thuộc đoạn thẳng AC sao cho AN = 13AC, P là điểm thuộc đoạn thẳng CD sao cho DP = 13DC. Chứng minh rằng (MNP) // (SBC).

Xem đáp án » 13/07/2024 13,508

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm các cạnh AB, CD, SA. Khẳng định nào sau đây là đúng?

A. (SBN) // (DAP).

B. (SBC) // (MPD).

C. (SBN) // (PMD).

D. (SDN) // (MAP).

Xem đáp án » 13/07/2024 11,832

Câu 3:

Cho đường thẳng a song song với mặt phẳng (P). Có bao nhiêu mặt phẳng chứa a và song song với (P)?

A. 0.

B. 1.

C. 2.

D. Vô số.

Xem đáp án » 13/07/2024 11,436

Câu 4:

Cho mặt phẳng (P) song song với mặt phẳng (Q). Khẳng định nào sau đây là đúng?

A. Mọi đường thẳng nằm trong (P) đều song song với mọi đường thẳng nằm trong (Q).

B. (P) song song với mọi đường thẳng nằm trong (Q).

C. Nếu mặt phẳng (R) song song với mặt phẳng (P) thì mặt phẳng (R) song song với mặt phẳng (Q).

D. Nếu đường thẳng a song song với mặt phẳng (Q) thì đường thẳng a song song với mặt phẳng (P).

Xem đáp án » 24/07/2023 4,263

Câu 5:

Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Khẳng định nào sau đây là đúng?

A. (ADF) // (BCE).

B. AD // (BEF).

C. (ABC) // (DEF).

D. EC // (ABD).

Xem đáp án » 13/07/2024 3,798

Câu 6:

Trong mặt phẳng (P) cho tam giác ABC. Qua A, B, C lần lượt vẽ các tia Ax, By, Cz đôi một song song với nhau và không nằm trong mặt phẳng (P). Trên các tia Ax, By, Cz lần lượt lấy các điểm A', B', C' sao cho AA' = BB' = CC'. Chứng minh rằng (ABC) // (A'B'C').

Xem đáp án » 12/07/2024 1,517

Bình luận


Bình luận
Vietjack official store