Câu hỏi:
12/07/2024 2,190c) Gọi I, J, K lần lượt là giao điểm của QM và AB, QP và AC, QN và AD. Chứng minh I, J, K thẳng hàng.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
c)
Ta có: QM ∩ AB = {I};
Mà QM ⊂ (QMN), AB ⊂ (ABCD)
Suy ra I ∈ (QMN) ∩ (ABC) (1)
Ta lại có: QN ∩ AD = {K}
Mà QN ⊂ (QMN), AD ⊂ (ABCD)
Suy ra K ∈ (QMN) ∩ (ABCD ) (2)
Từ (1) và (2) suy ra (QMN) ∩ (ABCD ) = {IM}.
Mặt khác, ta có: QE ∩ AC = {J}
Mà QE ⊂ (QMN), AC ⊂ (ABCD)
Suy ra J ∈ (QMN) ∩ (ABCD )
Do đó J thuộc đường thẳng IM.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ diện SABC. Gọi H, K lần lượt là hai điểm trên hai cạnh SA và SC (H ≠ S, A; K ≠ S, C) sao cho HK không song song với AC. Gọi I là trung điểm của BC (Hình 38).
a) Tìm giao điểm của đường thẳng HK và mặt phẳng (ABC).
Câu 2:
Cho tứ diện ABCD. Gọi E, F, G lần lượt là ba điểm trên ba cạnh AB, AC, BD sao cho EF cắt BC tại I (I ≠ C), EG cắt AD tại H (H ≠ D).
a) Tìm giao tuyến của các mặt phẳng (EFG) và (BCD), (EFG) và (ACD).
Câu 3:
Cho bốn điểm A, B, C, D phân biệt, trong đó không có ba điểm nào thẳng hàng. Có bao nhiêu đường thẳng đi qua hai trong bốn điểm đã cho.
Câu 4:
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi O là giao điểm của AC và BD; M và N lần lượt là trung điểm của SB và SD; P thuộc đoạn SC và không là trung điểm của SC.
a) Tìm giao điểm E của đường thẳng SO và mặt phẳng (MNP).
Câu 6:
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm của SC.
a) Tìm giao điểm I của đường thẳng AM và mặt phẳng (SBD). Chứng minh IA = 2IM.
Câu 7:
Cho hình chóp S.ABCD, gọi O là giao điểm của AC và BD. Lấy M, N lần lượt thuộc các cạnh SA, SC.
a) Chứng minh đường thẳng MN nằm trong mặt phẳng (SAC).
về câu hỏi!