Câu hỏi:

12/07/2024 10,059

Hình chóp S.ABC và điểm M thuộc miền trong tam giác ABC (Hình 17). Qua M, vẽ đường thẳng d song song với SA, cắt (SBC). Trên hình vẽ, hãy chỉ rõ vị trí của điểm N và xác định giao tuyến của hai mặt phẳng (SAC) và (CMN).

Hình chóp S.ABC và điểm M thuộc miền trong tam giác ABC (Hình 17). Qua M, vẽ đường thẳng d song song với SA, cắt (SBC). Trên hình vẽ, hãy chỉ rõ vị trí của điểm N và xác định giao tuyến của hai mặt phẳng (SAC) và (CMN).  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Hình chóp S.ABC và điểm M thuộc miền trong tam giác ABC (Hình 17). Qua M, vẽ đường thẳng d song song với SA, cắt (SBC). Trên hình vẽ, hãy chỉ rõ vị trí của điểm N và xác định giao tuyến của hai mặt phẳng (SAC) và (CMN).  (ảnh 2)

+) Trong mặt phẳng (ABC) kéo dài AM cắt cạnh BC tại I.

Ta có: mp(d, SA) = mp(SAI)

Trong mặt phẳng (SAI) gọi N là giao điểm của SI và d mà SI (SBC). Do đó giao điểm của đường thẳng d và (SBC) là N.

Gọi d’ là giao tuyến của hai mặt phẳng (SAC) và (CMN).

Ta có:  SACSAI=SACMNSAI=MNSACCMN=d'MNSAd'MNSA

Mà  CSACCCMNCSACCMN

Do đó C d’.

Vậy giao tuyến của hai mặt phẳng (SAC) và (CMN) là đường thẳng d’ đi qua C và song song với SA.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy là hình bình hành, AC và BD cắt nhau tại O. Gọi I là trung điểm của SO. Mặt phẳng ICD cắt SA, SB lần lượt tại M, N.  a) Hãy nói cách xác định hai điểm M và N. Cho AB = a. Tính MN theo a.  (ảnh 1)

a) +) Trong mặt phẳng (SBD) có DI cắt SB tại N.

Mà DI (ICD)

Do đó (ICD) cắt SB tại N.

+) Trong mặt phẳng (SAC) có CI cắt SA tại M.

Mà CI (ICD)

Do đó (ICD) cắt SA tại M.

+)

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I là trung điểm của SD. Hai mặt phẳng (IAC) và (SBC) cắt nhau theo giao tuyến Cx. Chứng minh rằng Cx // SB.  (ảnh 1)

Gọi O là giao điểm của AC và BD

Ta có:  SBDCIA=IOSBDSBC=SBCIASBC=CxIOSBCxIOSB.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP