Câu hỏi:

13/07/2024 3,239

Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng.

a) Chứng minh rằng (AFD) // (BEC).

b) Gọi M là trọng tâm của tam giác ABE. Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Lấy N là giao điểm của (P) và AC. Tính \[\frac{{AN}}{{NC}}\].

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a)

Media VietJack

Ta có: BE // AF (do ABEF là hình bình hành);

            AF (AFD)

Do đó BE // (AFD).

Ta cũng có: BC // AD (do ABCD là hình bình hành)

                    AD (AFD)

Do đó BC // (AFD).

Do BE // (AFD);

      BC // (AFD);

      BE, BC cắt nhau tại điểm B và cùng nằm trong mp(BEC)

Suy ra (AFD) // (BEC).

b)

Media VietJack

+) Do (AFD) song song với (P) nên tồn tại hai đường thẳng trong (AFD) song song với (P).

• Trong mp(ABEF), qua điểm M vẽ đường thẳng song song với AF, đường thẳng này cắt AB, EF lần lượt tại I, J.

Khi đó IJ // AF, mà AF (AFD) nên IJ // (AFD).

• Trong mp(ABCD), qua điểm I vẽ đường thẳng song song với AD, cắt CD tại K.

Khi đó IK // AD, mà AD (AFD) nên IK // (AFD).

• Ta có: IJ // (AFD);

             IK // (AFD);

             IJ, IK cắt nhau tại điểm I và cùng nằm trong mp(IJK).

Do đó (IJK) // (AFD).

Mà M IJ, IJ (IJK) nên mp (P) đi qua M và song song với (AFD) chính là mp(IJK).

+) Trong mp(ABCD), AC cắt IK tại N, khi đó N là giao điểm của AC và (P).

Trong mp(ABCD), xét DABC có IN // BC (do IK // AD // BC) nên theo định lí Thalès ta có: \[\frac{{AN}}{{NC}} = \frac{{AI}}{{IB}}\].

Trong mp(ABEF), xét DABF có IM // AF nên theo định lí Thalès ta có: \[\frac{{AI}}{{IB}} = \frac{{FM}}{{MB}}\].

Gọi O là tâm hình bình hành ABEF. Khi đó O là trung điểm của FB nên FO = OB.

Do M là trọng tâm của DABE nên \(MB = \frac{2}{3}OB\) và \(OM = \frac{1}{3}OB\).

Ta có: \[\frac{{AN}}{{NC}} = \frac{{AI}}{{IB}} = \frac{{FM}}{{MB}} = \frac{{FO + OM}}{{MB}} = \frac{{OB + \frac{1}{3}OB}}{{\frac{2}{3}OB}} = \frac{{\frac{4}{3}OB}}{{\frac{2}{3}OB}} = 2\].

Vậy \(\frac{{AM}}{{NC}} = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian cho hai mặt phẳng phân biệt (P) và (Q).

Nếu (P) và (Q) có một điểm chung thì chúng có bao nhiêu điểm chung? Các điểm chung đó có tính chất gì?

Xem đáp án » 13/07/2024 3,193

Câu 2:

Bạn Chung cho rằng: Nếu mặt phẳng (P) chứa hai đường thẳng a, b và a, b cùng song song với mặt phẳng (Q) thì (P) luôn song song với (Q). Phát biểu của bạn Chung có đúng không? Vì sao?

Xem đáp án » 13/07/2024 2,615

Câu 3:

Cho tứ diện ABCD. Lấy G1, G2, G3 lần lượt là trọng tâm của các tam giác ABC, ACD, ADB.

a) Chứng minh rằng (G1G2G3) // (BCD).

b) Xác định giao tuyến của mặt phẳng (G1G2G3) với mặt phẳng (ABD).

Xem đáp án » 13/07/2024 2,110

Câu 4:

Cho hai mặt phẳng phân biệt (P) và (Q). Mặt phẳng (P) chứa hai đường thẳng a, b cắt nhau và a, b cùng song song với mặt phẳng (Q) (Hình 61). Hai mặt phẳng (P) và (Q) có điểm chung hay không?

Xem đáp án » 13/07/2024 1,954

Câu 5:

Cho tứ diện ABCD. Các điểm M, N, P, I, J, K lần lượt là trung điểm của BC, CD, DB, AM, AN, AP. Chứng minh rằng (IJK) // (BCD).

Xem đáp án » 13/07/2024 1,413

Câu 6:

Nêu ví dụ trong thực tiễn minh hoạ hình ảnh hai mặt phẳng song song.

Xem đáp án » 13/07/2024 1,367

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn