Câu hỏi:
13/07/2024 3,239Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng.
a) Chứng minh rằng (AFD) // (BEC).
b) Gọi M là trọng tâm của tam giác ABE. Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Lấy N là giao điểm của (P) và AC. Tính \[\frac{{AN}}{{NC}}\].
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải
a)
Ta có: BE // AF (do ABEF là hình bình hành);
AF ⊂ (AFD)
Do đó BE // (AFD).
Ta cũng có: BC // AD (do ABCD là hình bình hành)
AD ⊂ (AFD)
Do đó BC // (AFD).
Do BE // (AFD);
BC // (AFD);
BE, BC cắt nhau tại điểm B và cùng nằm trong mp(BEC)
Suy ra (AFD) // (BEC).
b)
+) Do (AFD) song song với (P) nên tồn tại hai đường thẳng trong (AFD) song song với (P).
• Trong mp(ABEF), qua điểm M vẽ đường thẳng song song với AF, đường thẳng này cắt AB, EF lần lượt tại I, J.
Khi đó IJ // AF, mà AF ⊂ (AFD) nên IJ // (AFD).
• Trong mp(ABCD), qua điểm I vẽ đường thẳng song song với AD, cắt CD tại K.
Khi đó IK // AD, mà AD ⊂ (AFD) nên IK // (AFD).
• Ta có: IJ // (AFD);
IK // (AFD);
IJ, IK cắt nhau tại điểm I và cùng nằm trong mp(IJK).
Do đó (IJK) // (AFD).
Mà M ∈ IJ, IJ ⊂ (IJK) nên mp (P) đi qua M và song song với (AFD) chính là mp(IJK).
+) Trong mp(ABCD), AC cắt IK tại N, khi đó N là giao điểm của AC và (P).
Trong mp(ABCD), xét DABC có IN // BC (do IK // AD // BC) nên theo định lí Thalès ta có: \[\frac{{AN}}{{NC}} = \frac{{AI}}{{IB}}\].
Trong mp(ABEF), xét DABF có IM // AF nên theo định lí Thalès ta có: \[\frac{{AI}}{{IB}} = \frac{{FM}}{{MB}}\].
Gọi O là tâm hình bình hành ABEF. Khi đó O là trung điểm của FB nên FO = OB.
Do M là trọng tâm của DABE nên \(MB = \frac{2}{3}OB\) và \(OM = \frac{1}{3}OB\).
Ta có: \[\frac{{AN}}{{NC}} = \frac{{AI}}{{IB}} = \frac{{FM}}{{MB}} = \frac{{FO + OM}}{{MB}} = \frac{{OB + \frac{1}{3}OB}}{{\frac{2}{3}OB}} = \frac{{\frac{4}{3}OB}}{{\frac{2}{3}OB}} = 2\].
Vậy \(\frac{{AM}}{{NC}} = 2\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian cho hai mặt phẳng phân biệt (P) và (Q).
Nếu (P) và (Q) có một điểm chung thì chúng có bao nhiêu điểm chung? Các điểm chung đó có tính chất gì?
Câu 2:
Câu 3:
Cho tứ diện ABCD. Lấy G1, G2, G3 lần lượt là trọng tâm của các tam giác ABC, ACD, ADB.
a) Chứng minh rằng (G1G2G3) // (BCD).
b) Xác định giao tuyến của mặt phẳng (G1G2G3) với mặt phẳng (ABD).
Câu 4:
Câu 5:
Câu 6:
về câu hỏi!