Câu hỏi:

12/07/2024 9,082

Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1 nghịch biến trên khoảng (0; 1).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1

y′ = 3x2 − 6(m + 2)x + 3(m2 + 4m)

Hàm số y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1 nghịch biến trên khoảng (0;1) 

f ′(x) ≤ 0, x (0;1) và bằng 0 tại hữu hạn điểm trên (0;1).

3x2 − 6(m + 2)x + 3(m2 + 4m) ≤ 0, x (0;1) và bằng 0 tại hữu hạn điểm trên (0;1).

Xét phương trình 3x2 − 6(m + 2)x + 3(m2 + 4m) = 0 ()

Δ′ = 9(m +2)2 − 3.3.(m2 + 4m) = 36 > 0, m

Þ Phương trình (*) có 2 nghiệm phân biệt x1, x2.

Để hàm số nghịch biến trên khoảng (0;1) thì x1 ≤ 0 < 1 ≤ x2

x1x20                      (1x1)(1x2)0x1x20                                 1+x1x2(x1+x2)0

m2+4m0                             1+m2+4m2m404m03m13m0

m nên m3;2;1;0.

Vậy có 4 giá trị nguyên m thỏa mãn.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. SA = a và SA vuông góc với đáy. Tính khoảng cách d giữa hai đường chéo nhau SC và BD. (ảnh 1)

Gọi O là tâm hình vuông ABCD

Ta có: AC ^ BD; BD ^ SA

Do đó BD ^ (SAC)

Dựng OK ^ SC

Do đó OK là đoạn vuông góc chung của BD và SC

Khi đó d(BD;SC)=OK=12d(A;SC)=12SA.ACSA2+AC2 (1)

Ta có: AC2 = AB2 + BC2 = 2a2

Suy ra AC=a2

Thay vào (1) ta có d=a66.

Vậy d=a66.

Lời giải

Ta có y = 3x2 – 2mx – (m – 6)

Để hàm số đồng biến trên (0; 4)

Û y’ ≥ 0 "x Î (0; 4) và y′ = 0 tại một số giá trị hữu hạn.

3x2 − 2mx − (m − 6) ≥ 0 x (0; 4)

3x2 + 6 ≥ m(2x + 1)

Với mọi x (0; 4) ta có 2x + 1 > 0 nên

f(x)=3x2+62x+1m   x(0;4)

m ≤ min(0; 4) của f(x)

Xét hàm số f(x)=3x2+62x+1trên (0; 4) ta có:

f'(x)=6x2+6x122x+12=0

x=1(0;4)    x=2(0;4)

Xét bảng biến thiên:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số:  y = x^3 − mx^2 − (m − 6)x + 1 đồng biến trên (0; 4). (ảnh 1)

Dựa vào bảng biến thiên ta thấy min(0; 4) của f(x) = f(1) = 3 Û m ≤ 3

Khi m = 3 ta có : y′ = 3x2 − 6x + 3 = 3(x − 1)2 ≥ 0 x (0;4)

Vậy với m ≤ 3 thì hàm số đồng biến trên (0; 4).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay