Câu hỏi:
13/07/2024 958Cho hàm số y = x4 − 2mx2 + 3m − 2 (với m là tham số). Có bao nhiêu giá trị của tham số m để các điểm cực trị của đồ thị hàm số đều nằm trên các trục tọa độ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: y′ = 4x3 − 4mx = 0 Û 4x(x2 − m) = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = m\end{array} \right.\).
Để đồ thị hàm số có 3 điểm cực trị thì y′ = 0 có ba nghiệm phân biệt Û m > 0.
Khi đó đồ thị hàm số có các điểm cực trị là:
\(A\left( {0;\;3m - 2} \right),\;B\left( {\sqrt m ;\; - {m^2} + 3m - 2} \right),\;C\left( { - \sqrt m ;\; - {m^2} + 3m - 2} \right)\).
Dễ thấy A Î Oy nên bài toán thỏa khi B, C Î Ox
\( \Rightarrow - {m^2} + 3m - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 2\\m = 1\end{array} \right.\) (thỏa mãn).
Vậy có 2 giá trị của m thỏa mãn bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm m để y = x3 − 3x2 + mx − 1 có hai điểm cực trị x1, x2 thỏa mãn x12 + x22 = 3.
Câu 4:
Tìm giá trị nhỏ nhất của hàm số \(y = 3 + \sqrt {{x^2} - 2x + 5} \).
Câu 5:
Cho hàm số: y = 3 − 5sin x, giá trị lớn nhất và nhỏ nhất của hàm số là M và m. Tính \(\frac{M}{m}\).
Câu 6:
Cho hàm số y = −x3 − mx2 + (4m + 9)x + 5 với m là tham số. Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng (−∞; +∞)?
Câu 7:
Có ba lớp học sinh 10A, 10B, 10C gồm 128 em cùng tham gia lao động trồng cây. Mỗi em lớp 10A trồng được 3 cây bạch đàn và 4 cây bàng. Mỗi em lớp 10B trồng được 2 cây bạch đàn và 5 cây bàng. Mỗi em lớp 10C trồng được 6 cây bạch đàn. Cả 3 lớp trồng được 476 cây bạch đàn và 375 cây bàng. Hỏi mỗi lớp có bao nhiêu học sinh?
về câu hỏi!