Câu hỏi:

17/08/2023 172

Cho biểu thức: \(A = \left( {\frac{{a\sqrt a - 1}}{{a - \sqrt a }} - \frac{{a\sqrt a + 1}}{{a + \sqrt a }}} \right):\frac{{a + 2}}{{a - 2}}\).

a) Tìm ĐKXĐ.

b) Rút gọn biểu thức.

c) Với giá trị nguyên nào của a thì A đạt giá trị nhỏ nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) ĐKXĐ:

\(\left\{ \begin{array}{l}a \ge 0\\a - \sqrt a \ne 0\\a + \sqrt a \ne 0\\a - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a \ge 0\\\sqrt a \left( {\sqrt a - 1} \right) \ne 0\\\sqrt a \left( {\sqrt a + 1} \right) \ne 0\\a \ne 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a \ge 0\\a \ne 0\\a \ne 1\\a \ne 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a > 0\\a \ne 1\\a \ne 2\end{array} \right.\).

b) \(A = \left( {\frac{{a\sqrt a - 1}}{{a - \sqrt a }} - \frac{{a\sqrt a + 1}}{{a + \sqrt a }}} \right):\frac{{a + 2}}{{a - 2}}\).

\( = \left[ {\frac{{\left( {\sqrt a - 1} \right)\left( {a + \sqrt a + 1} \right)}}{{\sqrt a \left( {\sqrt a - 1} \right)}} - \frac{{\left( {\sqrt a + 1} \right)\left( {a - \sqrt a + 1} \right)}}{{\sqrt a \left( {\sqrt a + 1} \right)}}} \right]:\frac{{a + 2}}{{a - 2}}\)

\( = \left( {\frac{{a + \sqrt a + 1}}{{\sqrt a }} - \frac{{a - \sqrt a + 1}}{{\sqrt a }}} \right):\frac{{a + 2}}{{a - 2}}\)

\( = \frac{{\left( {a + \sqrt a + 1} \right) - \left( {a - \sqrt a + 1} \right)}}{{\sqrt a }}:\frac{{a + 2}}{{a - 2}}\)

\( = \frac{{a + \sqrt a + 1 - a + \sqrt a - 1}}{{\sqrt a }}:\frac{{a + 2}}{{a - 2}}\)

\( = \frac{{2\sqrt a }}{{\sqrt a }}:\frac{{a + 2}}{{a - 2}}\)

\( = 2:\frac{{a + 2}}{{a - 2}} = \frac{{2a - 4}}{{a + 2}}\).

c) Ta có: \(A = \frac{{2a - 4}}{{a + 2}} = \frac{{2a + 4 - 8}}{{a + 2}} = 2 - \frac{8}{{a + 2}}\).

Để A đạt GTNN thì \(\frac{8}{{a + 2}}\) đạt GTLN.

Khi đó a + 2 đạt GTNN hay a nhỏ nhất.

Mà a là số nguyên nên kết hợp điều kiện xác định suy ra a = 3.

Khi đó GTNN của A là \({A_{\min }} = 2 - \frac{8}{{3 + 2}} = \frac{2}{5}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm m để y = x3 − 3x2 + mx − 1 có hai điểm cực trị x1, x2 thỏa mãn x12 + x22 = 3.

Xem đáp án » 13/07/2024 15,254

Câu 2:

Có ba lớp học sinh 10A, 10B, 10C gồm 128 em cùng tham gia lao động trồng cây. Mỗi em lớp 10A trồng được 3 cây bạch đàn và 4 cây bàng. Mỗi em lớp 10B trồng được 2 cây bạch đàn và 5 cây bàng. Mỗi em lớp 10C trồng được 6 cây bạch đàn. Cả 3 lớp trồng được 476 cây bạch đàn và 375 cây bàng. Hỏi mỗi lớp có bao nhiêu học sinh?

Xem đáp án » 13/07/2024 9,035

Câu 3:

Tìm chu kì tuần hoàn của hàm số y = 2cos2 x + 2017.

Xem đáp án » 13/07/2024 8,519

Câu 4:

Tìm tập xác định của hàm số \(y = \sqrt {2 - \sin x} \)

Xem đáp án » 13/07/2024 8,155

Câu 5:

Tìm giá trị nhỏ nhất của hàm số \(y = 3 + \sqrt {{x^2} - 2x + 5} \).

Xem đáp án » 13/07/2024 6,379

Câu 6:

Cho hàm số: y = 3 5sin x, giá trị lớn nhất và nhỏ nhất của hàm số là M và m. Tính \(\frac{M}{m}\).

Xem đáp án » 13/07/2024 5,475

Câu 7:

Cho hàm số y = −x3 − mx2 + (4m + 9)x + 5 với m là tham số. Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng (−∞; +∞)?

Xem đáp án » 13/07/2024 4,849
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua