Câu hỏi:
17/08/2023 232
Cho biểu thức: \(A = \left( {\frac{{a\sqrt a - 1}}{{a - \sqrt a }} - \frac{{a\sqrt a + 1}}{{a + \sqrt a }}} \right):\frac{{a + 2}}{{a - 2}}\).
a) Tìm ĐKXĐ.
b) Rút gọn biểu thức.
c) Với giá trị nguyên nào của a thì A đạt giá trị nhỏ nhất.
Cho biểu thức: \(A = \left( {\frac{{a\sqrt a - 1}}{{a - \sqrt a }} - \frac{{a\sqrt a + 1}}{{a + \sqrt a }}} \right):\frac{{a + 2}}{{a - 2}}\).
a) Tìm ĐKXĐ.
b) Rút gọn biểu thức.
c) Với giá trị nguyên nào của a thì A đạt giá trị nhỏ nhất.
Quảng cáo
Trả lời:
a) ĐKXĐ:
\(\left\{ \begin{array}{l}a \ge 0\\a - \sqrt a \ne 0\\a + \sqrt a \ne 0\\a - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a \ge 0\\\sqrt a \left( {\sqrt a - 1} \right) \ne 0\\\sqrt a \left( {\sqrt a + 1} \right) \ne 0\\a \ne 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a \ge 0\\a \ne 0\\a \ne 1\\a \ne 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a > 0\\a \ne 1\\a \ne 2\end{array} \right.\).
b) \(A = \left( {\frac{{a\sqrt a - 1}}{{a - \sqrt a }} - \frac{{a\sqrt a + 1}}{{a + \sqrt a }}} \right):\frac{{a + 2}}{{a - 2}}\).
\( = \left[ {\frac{{\left( {\sqrt a - 1} \right)\left( {a + \sqrt a + 1} \right)}}{{\sqrt a \left( {\sqrt a - 1} \right)}} - \frac{{\left( {\sqrt a + 1} \right)\left( {a - \sqrt a + 1} \right)}}{{\sqrt a \left( {\sqrt a + 1} \right)}}} \right]:\frac{{a + 2}}{{a - 2}}\)
\( = \left( {\frac{{a + \sqrt a + 1}}{{\sqrt a }} - \frac{{a - \sqrt a + 1}}{{\sqrt a }}} \right):\frac{{a + 2}}{{a - 2}}\)
\( = \frac{{\left( {a + \sqrt a + 1} \right) - \left( {a - \sqrt a + 1} \right)}}{{\sqrt a }}:\frac{{a + 2}}{{a - 2}}\)
\( = \frac{{a + \sqrt a + 1 - a + \sqrt a - 1}}{{\sqrt a }}:\frac{{a + 2}}{{a - 2}}\)
\( = \frac{{2\sqrt a }}{{\sqrt a }}:\frac{{a + 2}}{{a - 2}}\)
\( = 2:\frac{{a + 2}}{{a - 2}} = \frac{{2a - 4}}{{a + 2}}\).
c) Ta có: \(A = \frac{{2a - 4}}{{a + 2}} = \frac{{2a + 4 - 8}}{{a + 2}} = 2 - \frac{8}{{a + 2}}\).
Để A đạt GTNN thì \(\frac{8}{{a + 2}}\) đạt GTLN.
Khi đó a + 2 đạt GTNN hay a nhỏ nhất.
Mà a là số nguyên nên kết hợp điều kiện xác định suy ra a = 3.
Khi đó GTNN của A là \({A_{\min }} = 2 - \frac{8}{{3 + 2}} = \frac{2}{5}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: y¢ = 3x2 − 6x + m
Để hàm số có hai điểm cực trị khi và chỉ khi phương trình y¢ = 0 có 2 nghiệm phân biệt
Û ∆¢ = 9 − 3m > 0 Û m < 3
Khi đó theo hệ thức Vi-ét, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = \frac{m}{3}\end{array} \right.\)
Theo bài ra ta có: x12 + x22 = 3
Û (x1 + x2)2 − 2x1x2 = 3
\( \Leftrightarrow {2^2} - \frac{{2m}}{3} = 3\)
\( \Leftrightarrow m = \frac{3}{2}\) (thỏa mãn)
Vậy \(m = \frac{3}{2}\) là giá trị cần tìm.
Lời giải
Gọi x, y, z (học sinh) lần lượt là số học sinh của lớp 10A, 10B, 10C (x, y, z ∈ ℕ*).
Điều kiện x, y, z nguyên dương.
Ba lớp học sinh 10A, 10B, 10C gồm 128 em nên ta có phương trình x + y + z = 128.
Mỗi em lớp 10A trồng được 3 cây bạch đàn, mỗi em lớp 10B trồng được 2 cây bạch đàn, mỗi em lớp 10C trồng được 6 cây bạch đàn. Cả 3 lớp trồng được 476 cây bạch đàn nên ta có phương trình 3x + 2y + 6z = 476
Mỗi em lớp 10A trồng được 4 cây bàng, mỗi em lớp 10B trồng được 5 cây bàng. Cả 3 lớp trồng được 375 cây bàng nên ta có phương trình 4x + 5y = 375.
Từ đó ta có hệ phương trình
\(\left\{ \begin{array}{l}x + y + z = 128\\3x + 2y + 6z = 476\\4x + 5y = 375\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y - 3z = - 92\\ - y + 4z = 137\\x + y + z = 128\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}z = 45\\y = 43\\x = 40\end{array} \right.\)
Vậy 10A có 40 học sinh, 10B có 43 học sinh, 10C có 45 học sinh.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.