Câu hỏi:

13/07/2024 935

Cho hình chóp S.ABCD, cạnh đáy ABCD là nửa lục giác đều nội tiếp đường tròn có đường kính AB = 2a, SA vuông góc với hai mặt phẳng (ABCD) và \(SA = a\sqrt 3 \). Tính góc giữa hai mặt phẳng (SBC) và (SCD).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD, cạnh đáy ABCD là nửa lục giác đều nội tiếp đường tròn có (ảnh 1)

Ta có ABCD là nửa lục giác đều suy ra AD = DC = CB = a

Dựng đường thẳng đi qua điểm A và vuông góc với mặt phẳng (SCD)

Trong (ABCD) dựng AH ^ CD tại H suy ra CD ^ (SAH)

Trong (SAH) dựng AP ^ SH Þ CD ^ AP Þ AP ^ (SCD)

Tiếp tục dựng đường thẳng đi qua A và vuông góc với mặt phẳng (SBC)

Trong (SAC) dựng đường AQ ^ SC

Vì BC ^ AC, BC ^ SA Þ BC ^ (SAC) Þ BC ^ AQ

Þ AQ ^ SBC)

Do đó góc giữa hai mặt phẳng (SBC), (SCD) là góc giữa hai đường thẳng vuông góc lần lượt với hai mặt phẳng là AP và AQ.

Ta có: ∆SAC vuông cân tại A suy ra \(AQ = \frac{{SC}}{2} = \frac{{a\sqrt 6 }}{2}\)

Mặt khác ∆AQP vuông tại O suy ra

\(\cos \widehat {PAQ} = \frac{{AP}}{{AQ}} = \frac{{\sqrt {10} }}{5} \Rightarrow \widehat {PAQ} = \arccos \frac{{\sqrt {10} }}{5}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: y¢ = 3x2 − 6x + m

Để hàm số có hai điểm cực trị khi và chỉ khi phương trình y¢ = 0 có 2 nghiệm phân biệt

Û¢ = 9 − 3m > 0 Û m < 3

Khi đó theo hệ thức Vi-ét, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = \frac{m}{3}\end{array} \right.\)

Theo bài ra ta có: x12 + x22 = 3

Û (x1 + x2)2 − 2x1x2 = 3

\( \Leftrightarrow {2^2} - \frac{{2m}}{3} = 3\)

\( \Leftrightarrow m = \frac{3}{2}\) (thỏa mãn)

Vậy \(m = \frac{3}{2}\) là giá trị cần tìm.

Lời giải

Gọi x, y, z (học sinh) lần lượt là số học sinh của lớp 10A, 10B, 10C (x, y, z ℕ*).

Điều kiện x, y, z nguyên dương.

Ba lớp học sinh 10A, 10B, 10C gồm 128 em nên ta có phương trình x + y + z = 128.

Mỗi em lớp 10A trồng được 3 cây bạch đàn, mỗi em lớp 10B trồng được 2 cây bạch đàn, mỗi em lớp 10C trồng được 6 cây bạch đàn. Cả 3 lớp trồng được 476 cây bạch đàn nên ta có phương trình 3x + 2y + 6z = 476

Mỗi em lớp 10A trồng được 4 cây bàng, mỗi em lớp 10B trồng được 5 cây bàng. Cả 3 lớp trồng được 375 cây bàng nên ta có phương trình 4x + 5y = 375.

Từ đó ta có hệ phương trình

\(\left\{ \begin{array}{l}x + y + z = 128\\3x + 2y + 6z = 476\\4x + 5y = 375\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y - 3z = - 92\\ - y + 4z = 137\\x + y + z = 128\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}z = 45\\y = 43\\x = 40\end{array} \right.\)

Vậy 10A có 40 học sinh, 10B có 43 học sinh, 10C có 45 học sinh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP