Câu hỏi:

13/07/2024 1,443

Cho hình lập phương ABCD có cạnh là 2. Gọi M, N lần lượt là trung điểm của BC và CD. Tính diện tích thiết diện của hình lập phương khi cắt bởi mặt phẳng (A'MN).

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình lập phương ABCD có cạnh là 2. Gọi M, N lần lượt là trung điểm của BC  (ảnh 1)

Kéo dài MN cắt AB và AD lần lượt tại E và F.

Gọi H = A'E Ç BB'; K = A'F Ç DD'. Khi đó thiết diện là A'HMNK.

Ta có ABMND là hình chiếu của A’HMNK trên mặt phẳng (ABCD).

Gọi I = AC Ç MN. ta có: AC ^ BD; MN // BD Þ AC ^ MN tại I.

\(\left\{ \begin{array}{l}MN \bot AI\\MN \bot AA'\end{array} \right. \Rightarrow MN \bot \left( {A'AI} \right) \Rightarrow MN \bot A'I\)

\( \Rightarrow \left( {\widehat {\left( {A'HMNK} \right);\;\left( {ABCD} \right)}} \right) = \widehat {AIA'}\)

Ta có:

\(CM = CN = 1 \Rightarrow MN = \sqrt 2 \Rightarrow IC = \frac{{\sqrt 2 }}{2}\)

\(AC = 2\sqrt 2 \Rightarrow AI = 2\sqrt 2 - \frac{{\sqrt 2 }}{2} = \frac{{3\sqrt 2 }}{2}\)

Xét tam giác vuông AA'I có: 

\(A'I = \sqrt {AA{'^2} + A{I^2}} = \sqrt {{2^2} + {{\left( {\frac{{3\sqrt 2 }}{2}} \right)}^2}} = \frac{{\sqrt {34} }}{2}\)

\( \Rightarrow \cos \widehat {AIA'} = \frac{{AI}}{{A'I}} = \frac{{\frac{{3\sqrt 2 }}{2}}}{{\frac{{\sqrt {34} }}{2}}} = \frac{3}{{\sqrt {17} }} = \cos \left( {\widehat {\left( {A'HMNK} \right);\;\left( {ABCD} \right)}} \right)\)

Ta có: \({S_{ABCD}} = 4;\;{S_{CMN}} = \frac{1}{2}\,.\,1\,.\,1 = \frac{1}{2}\)

\( \Rightarrow {S_{ABMND}} = 4 - \frac{1}{2} = \frac{7}{2}\).

\( \Rightarrow {S_{A'HMNK}} = \frac{{{S_{ABMND}}}}{{\cos \widehat {AIA'}}} = \frac{7}{2}\,.\,\frac{{\sqrt {17} }}{3} = \frac{{7\sqrt {17} }}{6}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm m để y = x3 − 3x2 + mx − 1 có hai điểm cực trị x1, x2 thỏa mãn x12 + x22 = 3.

Xem đáp án » 13/07/2024 13,582

Câu 2:

Tìm chu kì tuần hoàn của hàm số y = 2cos2 x + 2017.

Xem đáp án » 13/07/2024 8,276

Câu 3:

Tìm tập xác định của hàm số \(y = \sqrt {2 - \sin x} \)

Xem đáp án » 13/07/2024 7,739

Câu 4:

Tìm giá trị nhỏ nhất của hàm số \(y = 3 + \sqrt {{x^2} - 2x + 5} \).

Xem đáp án » 13/07/2024 5,906

Câu 5:

Cho hàm số: y = 3 5sin x, giá trị lớn nhất và nhỏ nhất của hàm số là M và m. Tính \(\frac{M}{m}\).

Xem đáp án » 13/07/2024 5,294

Câu 6:

Cho hàm số y = −x3 − mx2 + (4m + 9)x + 5 với m là tham số. Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng (−∞; +∞)?

Xem đáp án » 13/07/2024 4,529

Câu 7:

Có ba lớp học sinh 10A, 10B, 10C gồm 128 em cùng tham gia lao động trồng cây. Mỗi em lớp 10A trồng được 3 cây bạch đàn và 4 cây bàng. Mỗi em lớp 10B trồng được 2 cây bạch đàn và 5 cây bàng. Mỗi em lớp 10C trồng được 6 cây bạch đàn. Cả 3 lớp trồng được 476 cây bạch đàn và 375 cây bàng. Hỏi mỗi lớp có bao nhiêu học sinh?

Xem đáp án » 13/07/2024 4,145

Bình luận


Bình luận