Câu hỏi:
13/07/2024 513Cho hàm số \(y = \frac{{x + 2}}{{2x + 1}}\). Xác định m để đường thẳng y = mx + m − 1 luôn cắt đồ thị hàm số tại hai điểm thuộc về hai nhánh của đồ thị.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
TXĐ: \(D = \mathbb{R}\backslash \left\{ { - \frac{1}{2}} \right\}\) .
Phương trình hoành độ giao điểm của đồ thị và đường thẳng đã cho là:
\(\frac{{x + 2}}{{2x + 1}} = mx + m - 1\)
Þ x + 2 = 2mx2 + (3m − 2)x + m − 1
Û 2mx2 + (3m − 3)x + m − 3 = 0.
Để đồ thị hàm số cắt đường thẳng tại 2 điểm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt
\( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\\Delta > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\{\left( {m + 3} \right)^2} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m \ne - 3\end{array} \right.\;\;\left( {**} \right)\)
Giả sử 2 giao điểm là: A(x1; mx1 + m − 1) và B(x2; mx2 + m − 1)
Theo đinh lí Vi-et, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{3 - 3m}}{{2m}}\\{x_1}{x_2} = \frac{{m - 3}}{{2m}}\end{array} \right.\)
Đồ thị có \(x = - \frac{1}{2}\) là TCĐ của đồ thị hàm số.
Để 2 điểm thuộc về 2 nhánh của đồ thị thì:
\(\left( {m{x_1} + m - 1 - \frac{1}{2}} \right)\left( {m{x_2} + m - 1 - \frac{1}{2}} \right) < 0\)
\( \Leftrightarrow {m^2}{x_1}{x_2} + m\left( {m - \frac{3}{2}} \right)\left( {{x_1} + {x_2}} \right) + {\left( {m - \frac{3}{2}} \right)^2} < 0\)
\( \Leftrightarrow {m^2}\,.\,\frac{{m - 3}}{{2m}} + m\,.\,\frac{{2m - 3}}{3}\,.\,\frac{{3 - 3m}}{{2m}} + \frac{{{{\left( {2m - 3} \right)}^2}}}{4} < 0\)
Û −6m + 2m2 + 15m − 6m2 − 9 + 4m2 − 12m + 9 < 0
Û 9m > 0 Û m > 0.
Kết hợp với (**) suy ra m > 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm m để y = x3 − 3x2 + mx − 1 có hai điểm cực trị x1, x2 thỏa mãn x12 + x22 = 3.
Câu 4:
Tìm giá trị nhỏ nhất của hàm số \(y = 3 + \sqrt {{x^2} - 2x + 5} \).
Câu 5:
Cho hàm số: y = 3 − 5sin x, giá trị lớn nhất và nhỏ nhất của hàm số là M và m. Tính \(\frac{M}{m}\).
Câu 6:
Cho hàm số y = −x3 − mx2 + (4m + 9)x + 5 với m là tham số. Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng (−∞; +∞)?
Câu 7:
Có ba lớp học sinh 10A, 10B, 10C gồm 128 em cùng tham gia lao động trồng cây. Mỗi em lớp 10A trồng được 3 cây bạch đàn và 4 cây bàng. Mỗi em lớp 10B trồng được 2 cây bạch đàn và 5 cây bàng. Mỗi em lớp 10C trồng được 6 cây bạch đàn. Cả 3 lớp trồng được 476 cây bạch đàn và 375 cây bàng. Hỏi mỗi lớp có bao nhiêu học sinh?
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
về câu hỏi!