Câu hỏi:

13/07/2024 624

Trong mặt phẳng Oxy cho A(x1; y1). Hai điểm A, B đối xứng nhau qua đường phân giác của góc phần tư thứ tư. Tìm tọa độ của điểm B.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đường phân giác của góc phần tư thứ tư là d: y = −x.

Đường thẳng AB qua A(x1; y1) và vuông góc vưới d

Þ AB: (x − x1) − (y − y1) = 0

Û x − y − x1 + y1 = 0.

Gọi I = d Ç AB \( \Rightarrow \left\{ \begin{array}{l}{y_1} = - {x_1}\\{x_1} - {y_1} - {x_1} + {y_1} = 0\end{array} \right.\)

\( \Rightarrow I\left( {\frac{{{x_1} - {y_1}}}{2};\;\frac{{{y_1} - {x_1}}}{2}} \right)\)

\( \Rightarrow B\left( {2\,.\,\frac{{{x_1} - {y_1}}}{2} - {x_1};\;2\,.\,\frac{{{y_1} - {x_1}}}{2} - {y_1}} \right)\).

Þ B(−y1; −x1).

Vậy tọa độ của điểm B cần tìm là B(−y1; −x1).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: y¢ = 3x2 − 6x + m

Để hàm số có hai điểm cực trị khi và chỉ khi phương trình y¢ = 0 có 2 nghiệm phân biệt

Û¢ = 9 − 3m > 0 Û m < 3

Khi đó theo hệ thức Vi-ét, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = \frac{m}{3}\end{array} \right.\)

Theo bài ra ta có: x12 + x22 = 3

Û (x1 + x2)2 − 2x1x2 = 3

\( \Leftrightarrow {2^2} - \frac{{2m}}{3} = 3\)

\( \Leftrightarrow m = \frac{3}{2}\) (thỏa mãn)

Vậy \(m = \frac{3}{2}\) là giá trị cần tìm.

Lời giải

Gọi x, y, z (học sinh) lần lượt là số học sinh của lớp 10A, 10B, 10C (x, y, z ℕ*).

Điều kiện x, y, z nguyên dương.

Ba lớp học sinh 10A, 10B, 10C gồm 128 em nên ta có phương trình x + y + z = 128.

Mỗi em lớp 10A trồng được 3 cây bạch đàn, mỗi em lớp 10B trồng được 2 cây bạch đàn, mỗi em lớp 10C trồng được 6 cây bạch đàn. Cả 3 lớp trồng được 476 cây bạch đàn nên ta có phương trình 3x + 2y + 6z = 476

Mỗi em lớp 10A trồng được 4 cây bàng, mỗi em lớp 10B trồng được 5 cây bàng. Cả 3 lớp trồng được 375 cây bàng nên ta có phương trình 4x + 5y = 375.

Từ đó ta có hệ phương trình

\(\left\{ \begin{array}{l}x + y + z = 128\\3x + 2y + 6z = 476\\4x + 5y = 375\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y - 3z = - 92\\ - y + 4z = 137\\x + y + z = 128\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}z = 45\\y = 43\\x = 40\end{array} \right.\)

Vậy 10A có 40 học sinh, 10B có 43 học sinh, 10C có 45 học sinh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay