Câu hỏi:
12/07/2024 7,904
Một bức tường trang trí có dạng hình thang, rộng 2,4 m ở đáy và rộng 1,2 m ở đỉnh (hình vẽ bên). Các viên gạch hình vuông có kích thước 10 cm × 10 cm phải được đặt sao cho mỗi hàng ở phía trên chứa ít hơn một viên so với hàng ở ngay phía dưới nó. Hỏi sẽ cần bao nhiêu viên gạch hình vuông như vậy để ốp hết bức tường đó?
Một bức tường trang trí có dạng hình thang, rộng 2,4 m ở đáy và rộng 1,2 m ở đỉnh (hình vẽ bên). Các viên gạch hình vuông có kích thước 10 cm × 10 cm phải được đặt sao cho mỗi hàng ở phía trên chứa ít hơn một viên so với hàng ở ngay phía dưới nó. Hỏi sẽ cần bao nhiêu viên gạch hình vuông như vậy để ốp hết bức tường đó?

Câu hỏi trong đề: Giải SBT Toán 11 KNTT Bài 6. Cấp số cộng có đáp án !!
Quảng cáo
Trả lời:
Đổi 2,4 m = 240 cm; 1,2 m = 120 cm.
Số viên gạch ở hàng đầu tiên (ứng với đáy lớn) là u1 = 240 : 10 = 24 (viên).
Số viên gạch ở hàng trên cùng (ứng với đáy nhỏ) là un = 120 : 10 = 12 (viên).
Vì mỗi hãng ở phía trên chứa ít hơn một viên so với hàng ở ngay phía dưới nó nên số viên gạch ở mỗi hàng (tính từ dưới lên) lập thành một cấp số cộng có công sai d = – 1 và số hạng đầu u1 = 24.
Như vậy, un = u1 + (n – 1)d = 24 + (n – 1) . (– 1) = 25 – n. Mà un = 12 nên 25 – n = 12.
Suy ra n = 13.
Vậy số viên gạch hình vuông cần thiết để ốp hết bức tường đó là
(viên gạch).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
b) Ta có un + 1 = un + d = un – 3.
Vậy hệ thức truy hồi của cấp số cộng này là .
Lời giải
Lương mỗi năm của anh Nam lập thành một cấp số cộng với số hạng đầu u1 = 35 000 và công sai d = 1 400.
Áp dụng công thức tính tổng n số hạng đầu của cấp số cộng với Sn = 319 200, u1 = 35 000, d = 1 400, ta có
319 200 = Sn = [2 . 35 000 + (n – 1) .1 400]
⇔ n(68 600 + 1 400n) = 638 400
⇔ 1 400n2 + 68 600n – 638 400 = 0
Suy ra n = 8 hoặc n = – 57 (loại). Do đó n = 8.
Vậy sau 8 năm làm việc thì tổng lương mà anh Nam nhận được là 319 200 đô la.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.