Giải SGK Toán 11 KNTT Bài tập cuối chương II có đáp án
29 người thi tuần này 4.6 1.1 K lượt thi 11 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 10
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 2
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 1
Danh sách câu hỏi:
Lời giải
Lời giải:
Đáp án đúng là: C
+) Mỗi dãy số tăng đều bị chặn dưới bởi số hạng đầu u1 vì u1 < u2 < u3 < ...., do đó đáp án A đúng.
+) Mỗi dãy số giảm đều bị chặn trên bởi số hạng đầu u1 vì u1 > u2 > u3 > ...., do đó đáp án B đúng.
+) Một dãy số bị chặn không nhất thiết phải là dãy số tăng hoặc giảm. Chẳng hạn ta xét dãy số (un) có số hạng tổng quát un = \({\left( { - 1} \right)^{n - 1}}\sin \frac{1}{n}\).
Ta có nhận xét rằng dãy số này đan dấu nên nó không tăng, không giảm.
Mặt khác ta có: \(\left| {{u_n}} \right| = \left| {{{\left( { - 1} \right)}^{n - 1}}\sin \frac{1}{n}} \right| = \left| {\sin \frac{1}{n}} \right| \le 1\), suy ra dãy số (un) bị chặn.
Vậy đáp án C sai.
+) Đáp án D đúng do dãy số (un) không đổi thì mọi số hạng luôn bằng nhau và luôn tồn tại m, M để m ≤ un ≤ M với mọi n ∈ ℕ*.
Lời giải
Lời giải:
Đáp án đúng là: D
Xét từng đáp án, ta thấy:
+) Đáp án A, dãy số có số hạng tổng quát là \({u_n} = {\left( {\frac{1}{2}} \right)^n}\) có số hạng đầu \({u_1} = {\left( {\frac{1}{2}} \right)^1} = \frac{1}{2}\), không thỏa mãn.
+) Đáp án B, dãy số có số hạng tổng quát là \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{{{2^{n - 1}}}}\) có số hạng đầu \({u_1} = \frac{{{{\left( { - 1} \right)}^1}}}{{{2^{1 - 1}}}} = - 1\), không thỏa mãn.
+) Đáp án C, dãy số có số hạng tổng quát là \({u_n} = \frac{1}{{2n}}\) có số hạng đầu \({u_1} = \frac{1}{{2.1}} = \frac{1}{2}\), không thỏa mãn.
+) Đáp án D, dãy số có số hạng tổng quát là \({u_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}\) có số hạng đầu \({u_1} = {\left( {\frac{1}{2}} \right)^{1 - 1}} = 1\), thỏa mãn.
Lời giải
Lời giải:
Đáp án đúng là: A
Ta có: un – un – 1 = (3n + 6) – [3(n – 1) + 6] = 3n + 6 – (3n – 3 + 6) = 3, với mọi n ≥ 2.
Do đó, (un) là cấp số cộng có công sai d = 3.
Lời giải
Lời giải:
Đáp án đúng là: B
Nhận xét thấy dãy số cho bởi công thức truy hồi u1 = – 1, un + 1 = 2un có \(\frac{{{u_{n + 1}}}}{{{u_n}}} = 2\) với mọi n ≥ 1. Do đó, dãy số này là một cấp số nhân với số hạng đầu u1 = – 1 và công bội q = 2.
Lời giải
Lời giải:
Đáp án đúng là: C
Ta có: un – un – 1 = (2n – 1) – [2(n – 1) – 1] = 2n – 1 – (2n – 2 – 1) = 2, với mọi n ≥ 2.
Do đó, dãy số (un) là một cấp số cộng có u1 = 2 . 1 – 1 = 1 và công sai d = 2.
Tổng 100 số hạng đầu tiên của cấp số cộng này là
S100 = \(\frac{{100}}{2}\left[ {2{u_1} + \left( {100 - 1} \right)d} \right]\) = 50(2 . 1 + 99 . 2) = 10 000.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
