Giải SBT Toán 11 KNTT Bài 4. Phương trình lượng giác cơ bản có đáp án
29 người thi tuần này 4.6 424 lượt thi 6 câu hỏi
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Lời giải
a) \(2\sin \left( {\frac{x}{3} + 15^\circ } \right) + \sqrt 2 = 0\)
\( \Leftrightarrow \sin \left( {\frac{x}{3} + 15^\circ } \right) = - \frac{{\sqrt 2 }}{2}\)
\( \Leftrightarrow \sin \left( {\frac{x}{3} + 15^\circ } \right) = \sin \left( { - 45^\circ } \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}\frac{x}{3} + 15^\circ = - 45^\circ + k360^\circ \\\frac{x}{3} + 15^\circ = 180^\circ - \left( { - 45^\circ } \right) + k360^\circ \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = - 180^\circ + k1080^\circ \\x = 630^\circ + k1080^\circ \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
b) \(\cos \left( {2x + \frac{\pi }{5}} \right) = - 1\)
\( \Leftrightarrow 2x + \frac{\pi }{5} = \pi + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow x = \frac{{2\pi }}{5} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
c) 3tan 2x + \(\sqrt 3 \) = 0
\( \Leftrightarrow \tan 2x = - \frac{{\sqrt 3 }}{3}\)
\( \Leftrightarrow \tan 2x = \tan \left( { - \frac{\pi }{6}} \right)\)
\( \Leftrightarrow 2x = - \frac{\pi }{6} + k\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow x = - \frac{\pi }{{12}} + k\frac{\pi }{2}\,\,\left( {k \in \mathbb{Z}} \right)\).
d) cot (2x – 3) = cot 15°
⇔ 2x – 3 = 15° + k180° (k ∈ ℤ)
⇔ 2x = 3 + 15° + k180° (k ∈ ℤ)
⇔ x = 1,5 + 7,5° + k90° (k ∈ ℤ).
Lời giải
Lời giải
a) Ta có sin(2x + 15°) + cos(2x – 15°) = 0
⇔ sin(2x + 15°) = – cos(2x – 15°)
⇔ sin(2x + 15°) = – sin[90° – (2x – 15°)]
⇔ sin(2x + 15°) = sin[– 90° + (2x – 15°)]
⇔ sin(2x + 15°) = sin(2x – 105°)
\( \Leftrightarrow \left[ \begin{array}{l}2x + 15^\circ = 2x - 105^\circ + k360^\circ \\2x + 15^\circ = 180^\circ - \left( {2x - 105^\circ } \right) + k360^\circ \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}120^\circ = k360^\circ \\x = 67,5^\circ + k90^\circ \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
Không xảy ra trường hợp 120° = k360°.
Vậy phương trình đã cho có nghiệm x = 67,5° + k90° (k ∈ ℤ).
b) \(\cos \left( {2x + \frac{\pi }{5}} \right) + \cos \left( {3x - \frac{\pi }{6}} \right) = 0\)
\( \Leftrightarrow \cos \left( {2x + \frac{\pi }{5}} \right) = \cos \left[ {\pi - \left( {3x - \frac{\pi }{6}} \right)} \right]\)
\( \Leftrightarrow \cos \left( {2x + \frac{\pi }{5}} \right) = \cos \left( {\frac{{7\pi }}{6} - 3x} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{5} = \frac{{7\pi }}{6} - 3x + k2\pi \\2x + \frac{\pi }{5} = - \left( {\frac{{7\pi }}{6} - 3x} \right) + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{29\pi }}{{150}} + k\frac{{2\pi }}{5}\\x = \frac{{41\pi }}{{30}} - k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
c) Ta có tan x + cot x = 0
⇔ tan x = – cot x
⇔ tan x = cot(π – x)
\( \Leftrightarrow \tan x = \tan \left[ {\frac{\pi }{2} - \left( {\pi - x} \right)} \right]\)
\( \Leftrightarrow \tan x = \tan \left( {x - \frac{\pi }{2}} \right)\)
\( \Leftrightarrow x = x - \frac{\pi }{2} + k\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \frac{\pi }{2} - k\pi = 0\,\,\left( {k \in \mathbb{Z}} \right)\). Vô lí.
Vậy phương trình đã cho vô nghiệm.
d) Điều kiện cos x ≠ 0 .
Ta có sin x + tan x = 0
\( \Leftrightarrow \sin x + \frac{{\sin x}}{{\cos x}} = 0\)
\( \Leftrightarrow \sin x\left( {1 + \frac{1}{{\cos x}}} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\1 + \frac{1}{{\cos x}} = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\cos x = - 1\end{array} \right.\)
⇔ sin x = 0 (do sin2 x + cos2 x = 1)
⇔ x = kπ (k ∈ ℤ).
Vì x = kπ (k ∈ ℤ) thoả mãn điều kiện cos x ≠ 0 nên nghiệm của phương trình đã cho là
x = kπ (k ∈ ℤ).
Lời giải
Lời giải
a) Ta có (2 + cos x)(3cos 2x – 1) = 0
\( \Leftrightarrow \left[ \begin{array}{l}2 + \cos x = 0\\3\cos 2x - 1 = 0\end{array} \right.\)
+ Phương trình 2 + cos x = 0 vô nghiệm vì – 1 ≤ cos x ≤ 1.
+ Gọi α là góc thoả mãn cos α = \(\frac{1}{3}\). Ta có
3cos 2x – 1 = 0 ⇔ cos 2x = cos α ⇔ 2x = ± α + k2π (k ∈ ℤ) ⇔ x = \( \pm \frac{\alpha }{2}\) + kπ (k ∈ ℤ).
Vậy nghiệm của phương trình đã cho là x = \( \pm \frac{\alpha }{2}\) + kπ (k ∈ ℤ) với cos α = \(\frac{1}{3}\).
b) Ta có 2sin 2x – sin 4x = 0
⇔ 2sin 2x – 2sin 2x cos 2x = 0
⇔ 2sin 2x(1 – cos2x) = 0
\( \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\\cos 2x = 1\end{array} \right.\)
Do sin2 2x + cos2 2x = 1 nên cos 2x = 1 kéo theo sin 2x = 0, do đó phương trình đã cho tương đương với
sin 2x = 0 ⇔ 2x = kπ (k ∈ ℤ) \( \Leftrightarrow x = k\frac{\pi }{2}\,\,\left( {k \in \mathbb{Z}} \right)\).
c) Ta có cos6 x – sin6 x = 0
⇔ cos6 x = sin6 x
⇔ (cos2 x)3 = (sin2 x)3
⇔ cos2 x = sin2 x
⇔ cos2 x – sin2 x = 0
⇔ cos 2x = 0
Từ đó ta được 2x = \(\frac{\pi }{2}\) + kπ (k ∈ ℤ) hay \(x = \frac{\pi }{4} + k\frac{\pi }{2}\,\,\left( {k \in \mathbb{Z}} \right)\).
d) Điều kiện sin x ≠ 0 và cos 2x ≠ 0.
Ta có tan 2x cot x = 1
\( \Leftrightarrow \tan 2x = \frac{1}{{\cot x}}\)
⇔ tan 2x = tan x
⇔ 2x = x + kπ (k ∈ ℤ)
⇔ x = kπ (k ∈ ℤ).
Ta thấy x = kπ (k ∈ ℤ) không thoả mãn điều kiện sin x ≠ 0.
Vậy phương trình đã cho vô nghiệm.
Lời giải
Lời giải
a) Giá trị tương ứng của hai hàm số \(y = \cos \left( {2x - \frac{\pi }{3}} \right)\) và \(y = \cos \left( {x - \frac{\pi }{4}} \right)\) bằng nhau nếu
\(\cos \left( {2x - \frac{\pi }{3}} \right) = \cos \left( {x - \frac{\pi }{4}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{3} = x - \frac{\pi }{4} + k2\pi \\2x - \frac{\pi }{3} = - \left( {x - \frac{\pi }{4}} \right) + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{12}} + k2\pi \\x = \frac{{7\pi }}{{36}} + k\frac{{2\pi }}{3}\,\end{array} \right.\left( {k \in \mathbb{Z}} \right)\).
b) Giá trị tương ứng của hai hàm số \(y = \sin \left( {3x - \frac{\pi }{4}} \right)\) và \(y = \sin \left( {x - \frac{\pi }{6}} \right)\) bằng nhau nếu
\(\sin \left( {3x - \frac{\pi }{4}} \right) = \sin \left( {x - \frac{\pi }{6}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}3x - \frac{\pi }{4} = x - \frac{\pi }{6} + k2\pi \\3x - \frac{\pi }{4} = \pi - \left( {x - \frac{\pi }{6}} \right) + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{24}} + k2\pi \\x = \frac{{17\pi }}{{48}} + k\frac{\pi }{2}\,\end{array} \right.\left( {k \in \mathbb{Z}} \right)\).Lời giải
Lời giải
a) Vì \( - 1 \le \sin 2\pi \left( {x - \frac{1}{4}} \right) \le 1\) nên \( - 2,5 \le 2,5\sin 2\pi \left( {x - \frac{1}{4}} \right) \le 2,5\) và do đó ta có
\(2 - 2,5 \le 2 + 2,5\sin 2\pi \left( {x - \frac{1}{4}} \right) \le 2 + 2,5\)
hay \( - 0,5 \le 2 + 2,5\sin 2\pi \left( {x - \frac{1}{4}} \right) \le 4,5\,\,\forall x \in \mathbb{R}\).
Suy ra, gầu ở vị trí cao nhất khi \(\sin 2\pi \left( {x - \frac{1}{4}} \right) = 1\)\( \Leftrightarrow 2\pi \left( {x - \frac{1}{4}} \right) = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow x = \frac{1}{2} + k\,\,\left( {k \in \mathbb{Z}} \right)\). Do x ≥ 0 nên \(x = \frac{1}{2} + k\,\,\left( {k \in \mathbb{N}} \right)\).
Vậy gầu ở vị trí cao nhất tại các thời điểm \(\frac{1}{2},\,\,\frac{3}{2},\,\,\frac{5}{2},...\) phút.
Tương tự, gầu ở vị trí thấp nhất khi \(\sin 2\pi \left( {x - \frac{1}{4}} \right) = - 1\)\( \Leftrightarrow 2\pi \left( {x - \frac{1}{4}} \right) = - \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow x = k\,\,\left( {k \in \mathbb{Z}} \right)\). Do x ≥ 0 nên \(x = k\,\,\left( {k \in \mathbb{N}} \right)\).
Vậy gàu ở vị trí thấp nhất tại các thời điểm 0, 1, 2, 3, ... phút.
b) Gầu cách mặt nước 2 m khi \(2 + 2,5\sin 2\pi \left( {x - \frac{1}{4}} \right) = 2\)
\( \Leftrightarrow \sin 2\pi \left( {x - \frac{1}{4}} \right) = 0\)
\( \Leftrightarrow 2\pi \left( {x - \frac{1}{4}} \right) = k\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow x = \frac{1}{4} + \frac{k}{2}\,\,\left( {k \in \mathbb{Z}} \right)\).
Do x ≥ 0 nên \(x = \frac{1}{4} + \frac{k}{2}\,\,\left( {k \in \mathbb{N}} \right)\).
Vậy chiếc gầu cách mặt nước 2 m lần đầu tiên tại thời điểm \(x = \frac{1}{4}\) phút.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
85 Đánh giá
50%
40%
0%
0%
0%