Giải SGK Toán 11 KNTT Bài 11. Hai đường thẳng song song có đáp án
31 người thi tuần này 4.6 609 lượt thi 21 câu hỏi
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
10 Bài tập Biểu diễn góc lượng giác trên đường tròn lượng giác (có lời giải)
33 câu trắc nghiệm Toán 11 Kết nối tri thức Bài 29: Công thức cộng xác suất có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Lời giải:
Toán học mô tả vị trí tương quan giữa các tuyến đường trên như những vị trí tương đối của đường thẳng trong không gian.
Lời giải
Lời giải:
Quan sát Hình 4.13 ta thấy:
a) Hai tuyến đường mũi tên màu đỏ và mũi tên màu vàng giao nhau.
b) Hai tuyến đường mũi tên màu xanh dương và màu xanh lá cây không giao nhau.
c) Hai tuyến đường mũi tên màu xanh dương và mũi tên màu đỏ song song.
Lời giải
Lời giải:
+) Hình ảnh thực tế hai đường thẳng song song: hai cạnh đối diện chiếc bàn, các vạch kẻ đường, thanh lan can, …
+) Hình ảnh thực tế hai đường thẳng chéo nhau: cầu vượt và đường dưới, bóng đèn tuýp gắn trên tường và cạnh (không nằm trên tường treo đèn) của mặt tường bên cạnh,...
Lời giải
Lời giải:
a) Hai đường thẳng AB và AC cắt nhau tại giao điểm A.
Hai đường thẳng AB và CD song song với nhau (do ABCD là hình bình hành).
Hai đường thẳng AC và CD cắt nhau tại giao điểm C.
b) Vì hai điểm M, N lần lượt là hai điểm thuộc hai cạnh SA, SB nên hai điểm M, N thuộc mặt phẳng (SAB) hay các điểm S, A, B, M, N cùng thuộc một mặt phẳng nên các đường thẳng SA, MN, AB đồng phẳng, do đó khi lấy bất kì 2 trong 3 đường thẳng trên thì chúng có thể cắt nhau hoặc song song hoặc trùng nhau. Vậy trong các đường thẳng SA, MN, AB, không có hai đường thẳng nào chéo nhau.
Lời giải
Lời giải:
a) Các đường thẳng chéo với đường thẳng SA là BC và CD.
Giải thích: Nếu hai đường thẳng SA và BC không chéo nhau thì chúng cùng thuộc một mặt phẳng. Khi đó bốn điểm S, A, B, C đồng phẳng, trái với giả thiết S.ABCD là hình chóp. Do đó, hao đường thẳng SA và BC chéo nhau. Tương tự, giải thích được hai đường thẳng SA và CD chéo nhau.
b) Các đường thẳng chéo với đường thẳng BC là SA và SD. Giải thích tương tự câu a.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.