Giải SBT Toán 11 KNTT Bài 3. Hàm số lượng giác có đáp án

36 người thi tuần này 4.6 479 lượt thi 10 câu hỏi

🔥 Đề thi HOT:

1325 người thi tuần này

Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)

26.8 K lượt thi 30 câu hỏi
682 người thi tuần này

10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)

3.7 K lượt thi 10 câu hỏi
521 người thi tuần này

Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)

12.8 K lượt thi 25 câu hỏi
444 người thi tuần này

15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)

4.2 K lượt thi 15 câu hỏi
333 người thi tuần này

10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)

1.5 K lượt thi 10 câu hỏi
315 người thi tuần này

23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)

6.7 K lượt thi 23 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Lời giải

a) Biểu thức cot 3x có nghĩa khi sin 3x ≠ 0 hay \(3x \ne k\pi ,\,k \in \mathbb{Z}\) hay \(x \ne k\frac{\pi }{3},\,k \in \mathbb{Z}\).

Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {k\frac{\pi }{3}|k \in \mathbb{Z}} \right\}\).

b) Biểu thức \[\sqrt {1 - \cos 4x} \] có nghĩa với mọi x vì cos 4x ≤ 1 với mọi x hay 1 – cos 4x ≥ 0 với mọi x.

Vậy tập xác định của hàm số là ℝ.

c) Biểu thức \(\frac{{\cos 2x}}{{{{\sin }^2}x - {{\cos }^2}x}} = \frac{{\cos 2x}}{{ - \left( {{{\cos }^2}x - {{\sin }^2}x} \right)}} = \frac{{\cos 2x}}{{ - \cos 2x}}\) có nghĩa khi

cos 2x ≠ 0 hay \(2x \ne \frac{\pi }{2} + k\pi ,\,\,k \in \mathbb{Z}\), tức là \(x \ne \frac{\pi }{4} + k\frac{\pi }{2},\,\,k \in \mathbb{Z}\).

Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\frac{\pi }{2}|\,k \in \mathbb{Z}} \right\}\).

d) Ta có cos 2x ≥ – 1 nên 1 + cos 2x ≥ 0 với mọi x.

sin 2x ≤ 1 nên 1 – sin 2x ≥ 0 với mọi x.

Do đó, biểu thức \(\sqrt {\frac{{1 + \cos 2x}}{{1 - \sin 2x}}} \)có nghĩa khi sin 2x ≠ 1 hay \(2x \ne \frac{\pi }{2} + k2\pi ,\,k \in \mathbb{Z}\), tức là \(x \ne \frac{\pi }{4} + k\pi ,\,k \in \mathbb{Z}\).

Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\pi |\,k \in \mathbb{Z}} \right\}\).

Lời giải

Lời giải

a) Vì 0 ≤ |cos x| ≤ 1 nên 0 ≤ 3|cos x| ≤ 3, do đó 2 ≤ 2 + 3|cos x| ≤ 5 với mọi x ℝ.

Vậy giá trị lớn nhất của hàm số là 5, đạt được khi

|cos x| = 1 sin x = 0 x = kπ (k ℤ).

và giá trị nhỏ nhất của hàm số là 2, đạt được khi

cos x = 0 x = \(\frac{\pi }{2}\) + kπ (k ℤ).

b) Điều kiện sin x ≥ 0. Vì 0 ≤ \(\sqrt {\sin x} \) ≤ 1 nên 0 ≤ 2\(\sqrt {\sin x} \) ≤ 2,

do đó 1 ≤ 2\(\sqrt {\sin x} \) + 1 ≤ 3 với mọi x thoả mãn 0 ≤ sin x ≤ 1.

Vậy giá trị lớn nhất của hàm số là 3, đạt được khi sin x = 1 hay \(x = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Giá trị nhỏ nhất của hàm số là 1, đạt được khi sin x = 0 hay x = kπ (k ℤ).

c) Ta có y = 3 cos2 x + 4 cos2x \( = 3.\frac{{1 + \cos 2x}}{2} + 4\cos 2x\)\( = \frac{3}{2} + \frac{{11}}{2}\cos 2x\).

Vì – 1 ≤ cos2x ≤ 1 nên \( - \frac{{11}}{2} \le \frac{{11}}{2}\cos 2x \le \frac{{11}}{2}\),

do đó \( - 4 = \frac{3}{2} - \frac{{11}}{2} \le \frac{3}{2} + \frac{{11}}{2}\cos 2x \le \frac{3}{2} + \frac{{11}}{2} = 7\) với mọi x ℝ.

Vậy giá trị lớn nhất của hàm số là 7, đạt được khi

cos 2x = 1 2x = k2π x = kπ (k ℤ).

và giá trị nhỏ nhất của hàm số là – 4, đạt được khi

cos 2x = – 1 2x = π + k2π x = \(\frac{\pi }{2}\) + kπ (k ℤ).

d) Ta có y = sin x + cos x = \(\sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right)\).

Vì \( - 1 \le \sin \left( {x + \frac{\pi }{4}} \right) \le 1\) nên \( - \sqrt 2 \le \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) \le \sqrt 2 \), với mọi x ℝ.

Vậy giá trị lớn nhất của hàm số là \(\sqrt 2 \), đạt được khi \(\sin \left( {x + \frac{\pi }{4}} \right) = 1\)

\[ \Leftrightarrow x + \frac{\pi }{4} = \frac{\pi }{2} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\] hay \[x = \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\].

Giá trị nhỏ nhất của hàm số là \( - \sqrt 2 \), đạt được khi \(\sin \left( {x + \frac{\pi }{4}} \right) = - 1\)

\[ \Leftrightarrow x + \frac{\pi }{4} = - \frac{\pi }{2} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\] hay \[x = - \frac{{3\pi }}{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\].

Lời giải

Lời giải

a) Tập xác định của hàm số là D = ℝ \ {0}. Nếu kí hiệu f(x) = \(\frac{{\cos 2x}}{{{x^3}}}\) thì với mọi x D, ta có – x D và f(– x) = \(\frac{{\cos 2\left( { - x} \right)}}{{{{\left( { - x} \right)}^2}}} = \frac{{\cos 2x}}{{ - {x^3}}} = - \frac{{\cos 2x}}{{{x^3}}} = - f\left( x \right)\).

Vậy hàm số đã cho là hàm số lẻ.

b) Tập xác định của hàm số là D = ℝ. Nếu kí hiệu f(x) = x – sin 3x thì với mọi x D, ta có – x D và f(– x) = (– x) – sin 3(– x) = – x + sin 3x = – (x – sin 3x) = – f(x).

Vậy hàm số đã cho là hàm số lẻ.

c) Tập xác định của hàm số là D = ℝ. Nếu kí hiệu f(x) = \(\sqrt {1 + \cos x} \) thì với mọi x D, ta có – x D và f(– x) = \(\sqrt {1 + \cos \left( { - x} \right)} = \sqrt {1 + \cos x} = f\left( x \right)\).

Vậy hàm số đã cho là hàm số chẵn.

d) Tập xác định của hàm số là D = ℝ.

Ta có \(y = 1 + \cos x\sin \left( {\frac{{3\pi }}{2} - 2x} \right)\)

\( = 1 + \cos x\left( {\sin \frac{{3\pi }}{2}\cos 2x - \cos \frac{{3\pi }}{2}\sin 2x} \right)\)

\( = 1 - \cos x\cos 2x\).

Nếu kí hiệu f(x) = 1 – cos x cos 2x  thì với mọi x D, ta có – x D và

f(– x) = 1 – cos (– x) cos (– 2x) = 1 – cos x cos 2x = f(x).

Vậy hàm số đã cho là hàm số chẵn.

Lời giải

Lời giải

a) Tập xác định của hàm số là D = ℝ.

Nếu kí hiệu f(x) = A sin(ωx + φ) thì với mọi x D, ta có

\(x + \frac{{2\pi }}{\omega } \in D,\,\,x - \frac{{2\pi }}{\omega } \in D\)

\(f\left( {x + \frac{{2\pi }}{\omega }} \right) = A\sin \left( {\omega \left( {x + \frac{{2\pi }}{\omega }} \right) + \varphi } \right)\)= A sin(ωx + 2π + φ) = A sin(ωx + φ) = f(x).

Vậy hàm số đã cho là hàm số tuần hoàn, chu kì của hàm số này là \(\frac{{2\pi }}{\omega }\).

b) Nếu kí hiệu D là tập xác định của hàm số f(x) = A tan(ωx + φ) thì với mọi x D, ta có:

\(x + \frac{\pi }{\omega } \in D,\,\,x - \frac{\pi }{\omega } \in D\)

\(f\left( {x + \frac{\pi }{\omega }} \right) = A\tan \left( {\omega \left( {x + \frac{\pi }{\omega }} \right) + \varphi } \right)\)= A tan(ωx + π + φ) = A tan(ωx + φ) = f(x).

Vậy hàm số đã cho là hàm số tuần hoàn, chu kì của hàm số này là \(\frac{\pi }{\omega }\).

c) Ta có 3sin 2x + 3cos 2x = 3(sin 2x + cos 2x) = \(3\sqrt 2 \sin \left( {2x + \frac{\pi }{4}} \right)\).

Theo câu a, ta suy ra hàm số y = 3sin 2x + 3cos 2x là hàm số tuần hoàn chu kì \(\frac{{2\pi }}{2} = \pi \).

d) Ta có \(y = 3\sin \left( {2x + \frac{\pi }{6}} \right) + 3\sin \left( {2x - \frac{\pi }{3}} \right)\)

\( = 3.2\sin \frac{{\left( {2x + \frac{\pi }{6}} \right) + \left( {2x - \frac{\pi }{3}} \right)}}{2}\cos \frac{{\left( {2x + \frac{\pi }{6}} \right) - \left( {2x - \frac{\pi }{3}} \right)}}{2}\)

\( = 3\sqrt 2 \sin \left( {2x - \frac{\pi }{{12}}} \right)\).

Vậy theo câu a, hàm số \(y = 3\sin \left( {2x + \frac{\pi }{6}} \right) + 3\sin \left( {2x - \frac{\pi }{3}} \right)\) là hàm số tuần hoàn chu kì \(\frac{{2\pi }}{2} = \pi \).

Lời giải

Lời giải

a) Đẳng thức tan x cot x = 1 đúng với mọi x khi tan x và cot x có nghĩa, tức là

\(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right.\) 2sin x cos x ≠ 0 sin2x ≠ 0 2x ≠ kπ (k ℤ) \( \Leftrightarrow x \ne k\frac{\pi }{2}\,\,\left( {k \in \mathbb{Z}} \right)\).

b) Đẳng thức 1 + tan2 x = \(\frac{1}{{{{\cos }^2}x}}\) đúng với mọi x khi cos x ≠ 0, tức là x ≠ \(\frac{\pi }{2}\) + kπ (k ℤ).

c) Đẳng thức 1 + cot2 x = \(\frac{1}{{{{\sin }^2}x}}\) đúng với mọi x khi sinx ≠ 0, tức là x ≠ kπ (k ℤ).

d) Đẳng thức tan x + cot x = \(\frac{2}{{\sin 2x}}\) đúng với mọi x khi

\(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\\\sin 2x \ne 0\end{array} \right.\) 2sin x cos x ≠ 0 sin2x ≠ 0 2x ≠ kπ (k ℤ) \( \Leftrightarrow x \ne k\frac{\pi }{2}\,\,\left( {k \in \mathbb{Z}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

96 Đánh giá

50%

40%

0%

0%

0%