Giải SGK Toán 11 KNTT Bài tập cuối chương V có đáp án
26 người thi tuần này 4.6 580 lượt thi 17 câu hỏi
🔥 Đề thi HOT:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
160 bài trắc nghiệm Giới hạn từ đề thi đại học có đáp án (P1)
100 câu trắc nghiệm Vecto trong không gian cơ bản (P1)
58 Bài tập Giới hạn ôn thi đại học có lời giải (P1)
105 Bài tập trắc nghiệm Tổ hợp - Xác suất từ đề thi đại học có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
24 câu Trắc nghiệm Ôn tập Toán 11 Chương 2 Hình học có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Lời giải:
Đáp án đúng là: C
Ta có: \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 1} - \sqrt n } \right)\)\( = \mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2}\left( {1 + \frac{1}{{{n^2}}}} \right)} - \sqrt n } \right)\)
\( = \mathop {\lim }\limits_{n \to + \infty } \left( {n\sqrt {1 + \frac{1}{{{n^2}}}} - \sqrt n } \right)\)\( = \mathop {\lim }\limits_{n \to + \infty } \left[ {n\left( {\sqrt {1 + \frac{1}{{{n^2}}}} - \frac{1}{{\sqrt n }}} \right)} \right]\)
Vì \(\mathop {\lim }\limits_{n \to + \infty } n = + \infty \) và \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {1 + \frac{1}{{{n^2}}}} - \frac{1}{{\sqrt n }}} \right) = 1 > 0\).
Do đó \(\mathop {\lim }\limits_{n \to + \infty } \left[ {n\left( {\sqrt {1 + \frac{1}{{{n^2}}}} - \frac{1}{{\sqrt n }}} \right)} \right] = + \infty \). Vậy \[\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty \].
Lời giải
Lời giải:
Đáp án đúng là: B
Ta có: 2 + 22 + ... + 2n, đây là tổng của n số hạng đầu của cấp số nhân với số hạng đầu là u1 = 2 và công bội q = 2. Do đó, 2 + 22 + ... + 2n = \(\frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}} = \frac{{2\left( {1 - {2^n}} \right)}}{{1 - 2}} = - 2\left( {1 - {2^n}} \right)\).
Khi đó, \({u_n} = \frac{{2 + {2^2} + ... + {2^n}}}{{{2^n}}}\)\( = \frac{{ - 2\left( {1 - {2^n}} \right)}}{{{2^n}}}\)\( = \frac{{{2^n} - 1}}{{{2^{n - 1}}}} = 2 - \frac{1}{{{2^{n - 1}}}}\).
Vậy\(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \mathop {\lim }\limits_{n \to + \infty } \left( {2 - \frac{1}{{{2^{n - 1}}}}} \right) = 2\).
Lời giải
Lời giải:
Đáp án đúng là: C
Ta có: \({u_1} = \frac{2}{{{3^1}}} = \frac{2}{3}\), \({u_2} = \frac{2}{{{3^2}}} = \frac{2}{9}\), do đó công bội của cấp số nhân là \(q = \frac{{{u_2}}}{{{u_1}}} = \frac{2}{9}:\frac{2}{3} = \frac{1}{3}\).
Khi đó, tổng của cấp số nhân lùi vô hạn đã cho là \(S = \frac{{{u_1}}}{{1 - q}} = \frac{{\frac{2}{3}}}{{1 - \frac{1}{3}}} = 1\).Lời giải
Lời giải:
Đáp án đúng là: B
Ta có: \(f\left( x \right) = \sqrt {x + 1} - \sqrt {x + 2} \)\( = \frac{{{{\left( {\sqrt {x + 1} } \right)}^2} - {{\left( {\sqrt {x + 2} } \right)}^2}}}{{\sqrt {x + 1} + \sqrt {x + 2} }}\)
\( = \frac{{\left( {x + 1} \right) - \left( {x + 2} \right)}}{{\sqrt {x + 1} + \sqrt {x + 2} }}\)\( = \frac{{ - 1}}{{\sqrt {x + 1} + \sqrt {x + 2} }}\).
Do đó, \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 1}}{{\sqrt {x + 1} + \sqrt {x + 2} }}\)= 0.
Lời giải
Lời giải:
Đáp án đúng là: B
Ta có: \(f\left( x \right) = \frac{{x - {x^2}}}{{\left| x \right|}}\)\( = \left\{ \begin{array}{l}\frac{{x - {x^2}}}{x}\,\,khi\,\,x > 0\\\frac{{x - {x^2}}}{{ - x}}\,\,khi\,\,x < 0\end{array} \right.\)\( = \left\{ \begin{array}{l}1 - x\,\,\,\,khi\,\,x > 0\\x - 1\,\,\,\,khi\,\,x < 0\end{array} \right.\).
Do đó, \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\)\( = \mathop {\lim }\limits_{x \to {0^ + }} \left( {1 - x} \right) = 1 - 0 = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.