Câu hỏi:

11/07/2024 1,327

Tìm tập xác định của các hàm số sau và giải thích tại sao các hàm này liên tục trên các khoảng xác định của chúng.

a) \(f\left( x \right) = \frac{{\cos x}}{{{x^2} + 5x + 6}}\);

b) \(g\left( x \right) = \frac{{x - 2}}{{\sin \,x}}\).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Biểu thức \(\frac{{\cos x}}{{{x^2} + 5x + 6}}\) có nghĩa khi x2 + 5x + 6 ≠ 0 (x + 2)(x + 3) ≠ 0 \( \Leftrightarrow \left\{ \begin{array}{l}x \ne - 2\\x \ne - 3\end{array} \right.\).

Do đó, tập xác định của hàm số f(x) là ℝ \ {– 3; – 2} = (–∞; – 3) (– 3; – 2) (– 2; +∞).

Suy ra hàm số f(x) xác định trên các khoảng (–∞; – 3), (– 3; – 2) và (– 2; +∞). Trên các khoảng này, tử thức (hàm lượng giác) và mẫu thức (hàm đa thức) là các hàm số liên tục. Vậy hàm số \(f\left( x \right) = \frac{{\cos x}}{{{x^2} + 5x + 6}}\) liên tục trên các khoảng xác định của chúng.

b) Biểu thức \(\frac{{x - 2}}{{\sin \,x}}\) có nghĩa khi sin x ≠ 0 x ≠ kπ, k ℤ.

Do đó, tập xác định của hàm số g(x) là ℝ \ {kπ | k ℤ}. Hay hàm số g(x) xác định trên các khoảng (kπ; (k + 1)π) với k ℤ.

Trên các khoảng xác định của hàm số g(x), tử thức x – 2 (hàm đa thức) và mẫu thức sin x (hàm lượng giác) là các hàm số liên tục.

Vậy hàm số \(g\left( x \right) = \frac{{x - 2}}{{\sin \,x}}\) liên tục trên các khoảng xác định của chúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to 7} \frac{{\sqrt {x + 2} - 3}}{{x - 7}}\);

b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 1}}{{{x^2} - 1}}\);

c) \(\mathop {\lim }\limits_{x \to 1} \frac{{2 - x}}{{{{\left( {1 - x} \right)}^2}}}\);

d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x + 2}}{{\sqrt {4{x^2} + 1} }}\).

Xem đáp án » 11/07/2024 9,116

Câu 2:

Cho cấp số nhân lùi vô hạn (un) với \({u_n} = \frac{2}{{{3^n}}}.\) Tổng của cấp số nhân này bằng

A. 3.

B. 2.

C. 1.

D. 6.

Xem đáp án » 12/07/2024 5,258

Câu 3:

Cho \({u_n} = \frac{{2 + {2^2} + ... + {2^n}}}{{{2^n}}}\). Giới hạn của dãy số (un) bằng

A. 1.

B. 2.

C. – 1.

D. 0.

Xem đáp án » 12/07/2024 4,474

Câu 4:

Cho hàm số \(f\left( x \right) = \frac{{x - {x^2}}}{{\left| x \right|}}\). Khi đó \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\) bằng

A. 0.

B. 1.

C. +∞.

D. – 1.

Xem đáp án » 12/07/2024 3,762

Câu 5:

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} + x - 2}}{{x - 1}}\,\,\,\,n\^e 'u\,\,\,x \ne 1\\a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,\,x = 1\end{array} \right..\) Hàm số f(x) liên tục tại x = 1 khi

A. a = 0.

B. a = 3.

C. a = – 1.

D. a = 1.

Xem đáp án » 12/07/2024 3,511

Câu 6:

Cho dãy số (un) với \({u_n} = \sqrt {{n^2} + 1} - \sqrt n \). Mệnh đề đúng là

A. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = - \infty \).

B. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 1\).

C. \[\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty \].

D. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\).

Xem đáp án » 12/07/2024 3,464

Câu 7:

Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho.

a) \(f\left( x \right) = \left\{ \begin{array}{l}\frac{1}{x}\,\,\,n\^e 'u\,\,x \ne 0\\1\,\,\,\,\,\,n\^e 'u\,\,x = 0\end{array} \right.\) tại điểm x = 0;

b) \(g\left( x \right) = \left\{ \begin{array}{l}1 + x\,\,\,n\^e 'u\,\,x < 1\\2 - x\,\,\,n\^e 'u\,\,x \ge 1\end{array} \right.\) tại điểm x = 1.

Xem đáp án » 12/07/2024 2,854

Bình luận


Bình luận