Câu hỏi:
12/07/2024 1,531Tìm giới hạn của các dãy số có số hạng tổng quát cho bởi công thức sau:
a) \({u_n} = \frac{{{n^2}}}{{3{n^2} + 7n - 2}}\);
b) \({v_n} = \sum\limits_{k = 0}^n {\frac{{{3^k} + {5^k}}}{{{6^k}}}} \);
c) \[{{\rm{w}}_n} = \frac{{\sin \,n}}{{4n}}\].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
a) \({u_n} = \frac{{{n^2}}}{{3{n^2} + 7n - 2}}\)
Ta có: \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2}}}{{3{n^2} + 7n - 2}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2}}}{{{n^2}\left( {3 + \frac{7}{n} - \frac{2}{{{n^2}}}} \right)}}\)
\( = \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{3 + \frac{7}{n} - \frac{2}{{{n^2}}}}} = \frac{1}{3}\).
b) \({v_n} = \sum\limits_{k = 0}^n {\frac{{{3^k} + {5^k}}}{{{6^k}}}} \)\( = \frac{{{3^0} + {5^0}}}{{{6^0}}} + \frac{{{3^1} + {5^1}}}{{{6^1}}} + \frac{{{3^2} + {5^2}}}{{{6^2}}} + ... + \frac{{{3^n} + {5^n}}}{{{6^n}}}\)
\( = \left( {\frac{{{3^0}}}{{{6^0}}} + \frac{{{5^0}}}{{{6^0}}}} \right) + \left( {\frac{{{3^1}}}{{{6^1}}} + \frac{{{5^1}}}{{{6^1}}}} \right) + \left( {\frac{{{3^2}}}{{{6^2}}} + \frac{{{5^2}}}{{{6^2}}}} \right) + ... + \left( {\frac{{{3^n}}}{{{6^n}}} + \frac{{{5^n}}}{{{6^n}}}} \right)\)
\( = \left( {{{\left( {\frac{1}{2}} \right)}^0} + {{\left( {\frac{5}{6}} \right)}^0}} \right) + \left( {{{\left( {\frac{1}{2}} \right)}^1} + {{\left( {\frac{5}{6}} \right)}^1}} \right) + \left( {{{\left( {\frac{1}{2}} \right)}^2} + {{\left( {\frac{5}{6}} \right)}^2}} \right) + ... + \left( {{{\left( {\frac{1}{2}} \right)}^n} + {{\left( {\frac{5}{6}} \right)}^n}} \right)\)
\( = \left[ {{{\left( {\frac{1}{2}} \right)}^0} + {{\left( {\frac{1}{2}} \right)}^1} + {{\left( {\frac{1}{2}} \right)}^2} + ... + {{\left( {\frac{1}{2}} \right)}^n}} \right] + \left[ {{{\left( {\frac{5}{6}} \right)}^0} + {{\left( {\frac{5}{6}} \right)}^1} + {{\left( {\frac{5}{6}} \right)}^2} + ... + {{\left( {\frac{5}{6}} \right)}^n}} \right]\)
Vì \({\left( {\frac{1}{2}} \right)^1} + {\left( {\frac{1}{2}} \right)^2} + ... + {\left( {\frac{1}{2}} \right)^n}\) là tổng n số hạng đầu của cấp số nhân với số hạng đầu là \({\left( {\frac{1}{2}} \right)^1} = \frac{1}{2}\) và công bội là \(\frac{1}{2}\) nên
\({\left( {\frac{1}{2}} \right)^0} + {\left( {\frac{1}{2}} \right)^1} + {\left( {\frac{1}{2}} \right)^2} + ... + {\left( {\frac{1}{2}} \right)^n} = {\left( {\frac{1}{2}} \right)^0} + \frac{{\frac{1}{2}\left( {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right)}}{{1 - \frac{1}{2}}}\)\( = 1 + \left( {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right) = 2 - {\left( {\frac{1}{2}} \right)^n}\).
Tương tự, ta tính được:
\({\left( {\frac{5}{6}} \right)^0} + {\left( {\frac{5}{6}} \right)^1} + {\left( {\frac{5}{6}} \right)^2} + ... + {\left( {\frac{5}{6}} \right)^n} = {\left( {\frac{5}{6}} \right)^0} + \frac{{\frac{5}{6}\left( {1 - {{\left( {\frac{5}{6}} \right)}^n}} \right)}}{{1 - \frac{5}{6}}}\)\( = 1 + 5\left( {1 - {{\left( {\frac{5}{6}} \right)}^n}} \right) = 6 - 5 \cdot {\left( {\frac{5}{6}} \right)^n}\).
Do đó, \({v_n} = \sum\limits_{k = 0}^n {\frac{{{3^k} + {5^k}}}{{{6^k}}}} \) \( = \left[ {2 - {{\left( {\frac{1}{2}} \right)}^n}} \right] + \left[ {6 - 5 \cdot {{\left( {\frac{5}{6}} \right)}^n}} \right]\) \( = 8 - {\left( {\frac{1}{2}} \right)^n} - 5 \cdot {\left( {\frac{5}{6}} \right)^n}\).
Vậy \(\mathop {\lim }\limits_{n \to + \infty } {v_n} = \mathop {\lim }\limits_{n \to + \infty } \left( {\sum\limits_{k = 0}^n {\frac{{{3^k} + {5^k}}}{{{6^k}}}} } \right)\)\( = \mathop {\lim }\limits_{n \to + \infty } \left[ {8 - {{\left( {\frac{1}{2}} \right)}^n} - 5 \cdot {{\left( {\frac{5}{6}} \right)}^n}} \right]\) = 8.
c) \[{{\rm{w}}_n} = \frac{{\sin \,n}}{{4n}}\]
Ta có: \[\left| {{{\rm{w}}_n}} \right| = \left| {\frac{{\sin \,n}}{{4n}}} \right| \le \frac{1}{{4n}} < \frac{1}{n}\] và \(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{n} = 0\).
Do đó, \(\mathop {\lim }\limits_{n \to + \infty } {{\rm{w}}_n} = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sin \,n}}{{4n}} = 0\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to 7} \frac{{\sqrt {x + 2} - 3}}{{x - 7}}\);
b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 1}}{{{x^2} - 1}}\);
c) \(\mathop {\lim }\limits_{x \to 1} \frac{{2 - x}}{{{{\left( {1 - x} \right)}^2}}}\);
d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x + 2}}{{\sqrt {4{x^2} + 1} }}\).
Câu 2:
Cho \({u_n} = \frac{{2 + {2^2} + ... + {2^n}}}{{{2^n}}}\). Giới hạn của dãy số (un) bằng
A. 1.
B. 2.
C. – 1.
D. 0.
Câu 3:
Cho dãy số (un) với \({u_n} = \sqrt {{n^2} + 1} - \sqrt n \). Mệnh đề đúng là
A. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = - \infty \).
B. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 1\).
C. \[\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty \].
D. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\).
Câu 4:
Cho hàm số \(f\left( x \right) = \frac{{x - {x^2}}}{{\left| x \right|}}\). Khi đó \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\) bằng
A. 0.
B. 1.
C. +∞.
D. – 1.
Câu 5:
Câu 6:
Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho.
a) \(f\left( x \right) = \left\{ \begin{array}{l}\frac{1}{x}\,\,\,n\^e 'u\,\,x \ne 0\\1\,\,\,\,\,\,n\^e 'u\,\,x = 0\end{array} \right.\) tại điểm x = 0;
b) \(g\left( x \right) = \left\{ \begin{array}{l}1 + x\,\,\,n\^e 'u\,\,x < 1\\2 - x\,\,\,n\^e 'u\,\,x \ge 1\end{array} \right.\) tại điểm x = 1.
về câu hỏi!