Câu hỏi:

12/07/2024 1,531

Tìm giới hạn của các dãy số có số hạng tổng quát cho bởi công thức sau:

a) \({u_n} = \frac{{{n^2}}}{{3{n^2} + 7n - 2}}\);

b) \({v_n} = \sum\limits_{k = 0}^n {\frac{{{3^k} + {5^k}}}{{{6^k}}}} \);

c) \[{{\rm{w}}_n} = \frac{{\sin \,n}}{{4n}}\].

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) \({u_n} = \frac{{{n^2}}}{{3{n^2} + 7n - 2}}\)

Ta có: \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2}}}{{3{n^2} + 7n - 2}}\)\( = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2}}}{{{n^2}\left( {3 + \frac{7}{n} - \frac{2}{{{n^2}}}} \right)}}\)

\( = \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{3 + \frac{7}{n} - \frac{2}{{{n^2}}}}} = \frac{1}{3}\).

b) \({v_n} = \sum\limits_{k = 0}^n {\frac{{{3^k} + {5^k}}}{{{6^k}}}} \)\( = \frac{{{3^0} + {5^0}}}{{{6^0}}} + \frac{{{3^1} + {5^1}}}{{{6^1}}} + \frac{{{3^2} + {5^2}}}{{{6^2}}} + ... + \frac{{{3^n} + {5^n}}}{{{6^n}}}\)

\( = \left( {\frac{{{3^0}}}{{{6^0}}} + \frac{{{5^0}}}{{{6^0}}}} \right) + \left( {\frac{{{3^1}}}{{{6^1}}} + \frac{{{5^1}}}{{{6^1}}}} \right) + \left( {\frac{{{3^2}}}{{{6^2}}} + \frac{{{5^2}}}{{{6^2}}}} \right) + ... + \left( {\frac{{{3^n}}}{{{6^n}}} + \frac{{{5^n}}}{{{6^n}}}} \right)\)

\( = \left( {{{\left( {\frac{1}{2}} \right)}^0} + {{\left( {\frac{5}{6}} \right)}^0}} \right) + \left( {{{\left( {\frac{1}{2}} \right)}^1} + {{\left( {\frac{5}{6}} \right)}^1}} \right) + \left( {{{\left( {\frac{1}{2}} \right)}^2} + {{\left( {\frac{5}{6}} \right)}^2}} \right) + ... + \left( {{{\left( {\frac{1}{2}} \right)}^n} + {{\left( {\frac{5}{6}} \right)}^n}} \right)\)

\( = \left[ {{{\left( {\frac{1}{2}} \right)}^0} + {{\left( {\frac{1}{2}} \right)}^1} + {{\left( {\frac{1}{2}} \right)}^2} + ... + {{\left( {\frac{1}{2}} \right)}^n}} \right] + \left[ {{{\left( {\frac{5}{6}} \right)}^0} + {{\left( {\frac{5}{6}} \right)}^1} + {{\left( {\frac{5}{6}} \right)}^2} + ... + {{\left( {\frac{5}{6}} \right)}^n}} \right]\)

Vì \({\left( {\frac{1}{2}} \right)^1} + {\left( {\frac{1}{2}} \right)^2} + ... + {\left( {\frac{1}{2}} \right)^n}\) là tổng n số hạng đầu của cấp số nhân với số hạng đầu là \({\left( {\frac{1}{2}} \right)^1} = \frac{1}{2}\) và công bội là \(\frac{1}{2}\) nên

 \({\left( {\frac{1}{2}} \right)^0} + {\left( {\frac{1}{2}} \right)^1} + {\left( {\frac{1}{2}} \right)^2} + ... + {\left( {\frac{1}{2}} \right)^n} = {\left( {\frac{1}{2}} \right)^0} + \frac{{\frac{1}{2}\left( {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right)}}{{1 - \frac{1}{2}}}\)\( = 1 + \left( {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right) = 2 - {\left( {\frac{1}{2}} \right)^n}\).

Tương tự, ta tính được:

\({\left( {\frac{5}{6}} \right)^0} + {\left( {\frac{5}{6}} \right)^1} + {\left( {\frac{5}{6}} \right)^2} + ... + {\left( {\frac{5}{6}} \right)^n} = {\left( {\frac{5}{6}} \right)^0} + \frac{{\frac{5}{6}\left( {1 - {{\left( {\frac{5}{6}} \right)}^n}} \right)}}{{1 - \frac{5}{6}}}\)\( = 1 + 5\left( {1 - {{\left( {\frac{5}{6}} \right)}^n}} \right) = 6 - 5 \cdot {\left( {\frac{5}{6}} \right)^n}\).

Do đó, \({v_n} = \sum\limits_{k = 0}^n {\frac{{{3^k} + {5^k}}}{{{6^k}}}} \) \( = \left[ {2 - {{\left( {\frac{1}{2}} \right)}^n}} \right] + \left[ {6 - 5 \cdot {{\left( {\frac{5}{6}} \right)}^n}} \right]\) \( = 8 - {\left( {\frac{1}{2}} \right)^n} - 5 \cdot {\left( {\frac{5}{6}} \right)^n}\).

Vậy \(\mathop {\lim }\limits_{n \to + \infty } {v_n} = \mathop {\lim }\limits_{n \to + \infty } \left( {\sum\limits_{k = 0}^n {\frac{{{3^k} + {5^k}}}{{{6^k}}}} } \right)\)\( = \mathop {\lim }\limits_{n \to + \infty } \left[ {8 - {{\left( {\frac{1}{2}} \right)}^n} - 5 \cdot {{\left( {\frac{5}{6}} \right)}^n}} \right]\) = 8.

c) \[{{\rm{w}}_n} = \frac{{\sin \,n}}{{4n}}\]

Ta có: \[\left| {{{\rm{w}}_n}} \right| = \left| {\frac{{\sin \,n}}{{4n}}} \right| \le \frac{1}{{4n}} < \frac{1}{n}\] và \(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{n} = 0\).

Do đó, \(\mathop {\lim }\limits_{n \to + \infty } {{\rm{w}}_n} = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sin \,n}}{{4n}} = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to 7} \frac{{\sqrt {x + 2} - 3}}{{x - 7}}\);

b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 1}}{{{x^2} - 1}}\);

c) \(\mathop {\lim }\limits_{x \to 1} \frac{{2 - x}}{{{{\left( {1 - x} \right)}^2}}}\);

d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x + 2}}{{\sqrt {4{x^2} + 1} }}\).

Xem đáp án » 11/07/2024 2,836

Câu 2:

Cho \({u_n} = \frac{{2 + {2^2} + ... + {2^n}}}{{{2^n}}}\). Giới hạn của dãy số (un) bằng

A. 1.

B. 2.

C. – 1.

D. 0.

Xem đáp án » 12/07/2024 2,431

Câu 3:

Cho dãy số (un) với \({u_n} = \sqrt {{n^2} + 1} - \sqrt n \). Mệnh đề đúng là

A. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = - \infty \).

B. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 1\).

C. \[\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty \].

D. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\).

Xem đáp án » 12/07/2024 1,710

Câu 4:

Cho hàm số \(f\left( x \right) = \frac{{x - {x^2}}}{{\left| x \right|}}\). Khi đó \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\) bằng

A. 0.

B. 1.

C. +∞.

D. – 1.

Xem đáp án » 12/07/2024 1,652

Câu 5:

Cho dãy số (un) có tính chất |un – 1| < \(\frac{2}{n}\). Có kết luận gì về giới hạn của dãy số này?

Xem đáp án » 12/07/2024 1,533

Câu 6:

Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho.

a) \(f\left( x \right) = \left\{ \begin{array}{l}\frac{1}{x}\,\,\,n\^e 'u\,\,x \ne 0\\1\,\,\,\,\,\,n\^e 'u\,\,x = 0\end{array} \right.\) tại điểm x = 0;

b) \(g\left( x \right) = \left\{ \begin{array}{l}1 + x\,\,\,n\^e 'u\,\,x < 1\\2 - x\,\,\,n\^e 'u\,\,x \ge 1\end{array} \right.\) tại điểm x = 1.

Xem đáp án » 12/07/2024 1,405

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store