Câu hỏi:
11/07/2024 8,748Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to 7} \frac{{\sqrt {x + 2} - 3}}{{x - 7}}\);
b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 1}}{{{x^2} - 1}}\);
c) \(\mathop {\lim }\limits_{x \to 1} \frac{{2 - x}}{{{{\left( {1 - x} \right)}^2}}}\);
d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x + 2}}{{\sqrt {4{x^2} + 1} }}\).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
a) \(\mathop {\lim }\limits_{x \to 7} \frac{{\sqrt {x + 2} - 3}}{{x - 7}}\)\( = \mathop {\lim }\limits_{x \to 7} \frac{{{{\left( {\sqrt {x + 2} } \right)}^2} - {3^2}}}{{\left( {x - 7} \right)\left( {\sqrt {x + 2} + 3} \right)}}\)
\( = \mathop {\lim }\limits_{x \to 7} \frac{{x - 7}}{{\left( {x - 7} \right)\left( {\sqrt {x + 2} + 3} \right)}}\)\( = \mathop {\lim }\limits_{x \to 7} \frac{1}{{\sqrt {x + 2} + 3}}\)\( = \frac{1}{{\sqrt {7 + 2} + 3}} = \frac{1}{6}\).
b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 1}}{{{x^2} - 1}}\)\( = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + x + 1}}{{x + 1}} = \frac{{{1^2} + 1 + 1}}{{1 + 1}} = \frac{3}{2}\).
c) \(\mathop {\lim }\limits_{x \to 1} \frac{{2 - x}}{{{{\left( {1 - x} \right)}^2}}}\)
Ta có: \(\mathop {\lim }\limits_{x \to 1} \left( {2 - x} \right) = 2 - 1 = 1 > 0\);
\(\mathop {\lim }\limits_{x \to 1} {\left( {1 - x} \right)^2} = 0\) và (1 – x)2 > 0 với mọi x ≠ 1.
Do vậy, \(\mathop {\lim }\limits_{x \to 1} \frac{{2 - x}}{{{{\left( {1 - x} \right)}^2}}} = + \infty \).
d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x + 2}}{{\sqrt {4{x^2} + 1} }}\)\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{x + 2}}{{\sqrt {{x^2}\left( {4 + \frac{1}{{{x^2}}}} \right)} }}\)
\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{x\left( {1 + \frac{2}{x}} \right)}}{{ - x\sqrt {4 + \frac{1}{{{x^2}}}} }}\)\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - \left( {1 + \frac{2}{x}} \right)}}{{\sqrt {4 + \frac{1}{{{x^2}}}} }}\)\( = - \frac{1}{2}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho cấp số nhân lùi vô hạn (un) với \({u_n} = \frac{2}{{{3^n}}}.\) Tổng của cấp số nhân này bằng
A. 3.
B. 2.
C. 1.
D. 6.
Câu 2:
Cho \({u_n} = \frac{{2 + {2^2} + ... + {2^n}}}{{{2^n}}}\). Giới hạn của dãy số (un) bằng
A. 1.
B. 2.
C. – 1.
D. 0.
Câu 3:
Cho hàm số \(f\left( x \right) = \frac{{x - {x^2}}}{{\left| x \right|}}\). Khi đó \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\) bằng
A. 0.
B. 1.
C. +∞.
D. – 1.
Câu 4:
Cho dãy số (un) với \({u_n} = \sqrt {{n^2} + 1} - \sqrt n \). Mệnh đề đúng là
A. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = - \infty \).
B. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 1\).
C. \[\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty \].
D. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\).
Câu 5:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} + x - 2}}{{x - 1}}\,\,\,\,n\^e 'u\,\,\,x \ne 1\\a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,\,x = 1\end{array} \right..\) Hàm số f(x) liên tục tại x = 1 khi
A. a = 0.
B. a = 3.
C. a = – 1.
D. a = 1.
Câu 6:
Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho.
a) \(f\left( x \right) = \left\{ \begin{array}{l}\frac{1}{x}\,\,\,n\^e 'u\,\,x \ne 0\\1\,\,\,\,\,\,n\^e 'u\,\,x = 0\end{array} \right.\) tại điểm x = 0;
b) \(g\left( x \right) = \left\{ \begin{array}{l}1 + x\,\,\,n\^e 'u\,\,x < 1\\2 - x\,\,\,n\^e 'u\,\,x \ge 1\end{array} \right.\) tại điểm x = 1.
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
160 Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P4)
100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản (P1)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
15 câu Trắc nghiệm Đại cương về đường thẳng và mặt phẳng có đáp án (Nhận biết)
về câu hỏi!