Câu hỏi:
11/07/2024 9,115Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to 7} \frac{{\sqrt {x + 2} - 3}}{{x - 7}}\);
b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 1}}{{{x^2} - 1}}\);
c) \(\mathop {\lim }\limits_{x \to 1} \frac{{2 - x}}{{{{\left( {1 - x} \right)}^2}}}\);
d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x + 2}}{{\sqrt {4{x^2} + 1} }}\).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải:
a) \(\mathop {\lim }\limits_{x \to 7} \frac{{\sqrt {x + 2} - 3}}{{x - 7}}\)\( = \mathop {\lim }\limits_{x \to 7} \frac{{{{\left( {\sqrt {x + 2} } \right)}^2} - {3^2}}}{{\left( {x - 7} \right)\left( {\sqrt {x + 2} + 3} \right)}}\)
\( = \mathop {\lim }\limits_{x \to 7} \frac{{x - 7}}{{\left( {x - 7} \right)\left( {\sqrt {x + 2} + 3} \right)}}\)\( = \mathop {\lim }\limits_{x \to 7} \frac{1}{{\sqrt {x + 2} + 3}}\)\( = \frac{1}{{\sqrt {7 + 2} + 3}} = \frac{1}{6}\).
b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 1}}{{{x^2} - 1}}\)\( = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + x + 1}}{{x + 1}} = \frac{{{1^2} + 1 + 1}}{{1 + 1}} = \frac{3}{2}\).
c) \(\mathop {\lim }\limits_{x \to 1} \frac{{2 - x}}{{{{\left( {1 - x} \right)}^2}}}\)
Ta có: \(\mathop {\lim }\limits_{x \to 1} \left( {2 - x} \right) = 2 - 1 = 1 > 0\);
\(\mathop {\lim }\limits_{x \to 1} {\left( {1 - x} \right)^2} = 0\) và (1 – x)2 > 0 với mọi x ≠ 1.
Do vậy, \(\mathop {\lim }\limits_{x \to 1} \frac{{2 - x}}{{{{\left( {1 - x} \right)}^2}}} = + \infty \).
d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x + 2}}{{\sqrt {4{x^2} + 1} }}\)\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{x + 2}}{{\sqrt {{x^2}\left( {4 + \frac{1}{{{x^2}}}} \right)} }}\)
\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{x\left( {1 + \frac{2}{x}} \right)}}{{ - x\sqrt {4 + \frac{1}{{{x^2}}}} }}\)\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - \left( {1 + \frac{2}{x}} \right)}}{{\sqrt {4 + \frac{1}{{{x^2}}}} }}\)\( = - \frac{1}{2}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho cấp số nhân lùi vô hạn (un) với \({u_n} = \frac{2}{{{3^n}}}.\) Tổng của cấp số nhân này bằng
A. 3.
B. 2.
C. 1.
D. 6.
Câu 2:
Cho \({u_n} = \frac{{2 + {2^2} + ... + {2^n}}}{{{2^n}}}\). Giới hạn của dãy số (un) bằng
A. 1.
B. 2.
C. – 1.
D. 0.
Câu 3:
Cho hàm số \(f\left( x \right) = \frac{{x - {x^2}}}{{\left| x \right|}}\). Khi đó \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\) bằng
A. 0.
B. 1.
C. +∞.
D. – 1.
Câu 4:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} + x - 2}}{{x - 1}}\,\,\,\,n\^e 'u\,\,\,x \ne 1\\a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,\,x = 1\end{array} \right..\) Hàm số f(x) liên tục tại x = 1 khi
A. a = 0.
B. a = 3.
C. a = – 1.
D. a = 1.
Câu 5:
Cho dãy số (un) với \({u_n} = \sqrt {{n^2} + 1} - \sqrt n \). Mệnh đề đúng là
A. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = - \infty \).
B. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 1\).
C. \[\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty \].
D. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\).
Câu 6:
Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho.
a) \(f\left( x \right) = \left\{ \begin{array}{l}\frac{1}{x}\,\,\,n\^e 'u\,\,x \ne 0\\1\,\,\,\,\,\,n\^e 'u\,\,x = 0\end{array} \right.\) tại điểm x = 0;
b) \(g\left( x \right) = \left\{ \begin{array}{l}1 + x\,\,\,n\^e 'u\,\,x < 1\\2 - x\,\,\,n\^e 'u\,\,x \ge 1\end{array} \right.\) tại điểm x = 1.
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
về câu hỏi!