Giải SBT Toán lớp 11 – KNTT – Tập 1 Bài 17. Hàm số liên tục có đáp án
42 người thi tuần này 4.6 562 lượt thi 7 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 10
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 2
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 1
Danh sách câu hỏi:
Lời giải
Do hàm số g(x) liên tục trên ℝ trừ điểm x = 0 nên hàm số g(x) liên tục tại x = 1.
Xét hàm số h(x) = x xác định với mọi x ∈ ℝ, ta thấy hàm số này liên tục trên ℝ nên nó cũng liên tục tại x = 1.
Do đó với x ≠ 0, hàm số liên tục tại x = 1.
Lời giải
+ Với x < 1 thì f(x) = 3 luôn liên tục trên (– ∞; 1).
+ Với 1 < x < 2 thì f(x) = ax + b luôn liên tục trên (1; 2).
+ Với x > 2 thì f(x) = 5 luôn liên tục trên (2; +∞).
Do đó, ta cần xét tính liên tục của hàm số f(x) tại x = 1 và x = 2.
Ta có: ; ; f(1) = 3;
; ; f(2) = 5.
Để hàm số f(x) liên tục trên ℝ thì hàm số f(x) phải liên tục tại x = 1 và x = 2, tức là
.
Vậy a = 2, b = 1 thì hàm số f(x) liên tục trên ℝ.
Lời giải
Hàm số đã cho luôn liên tục trên các khoảng (– ∞; 1) và (1; +∞).
Ta cần xét tính liên tục của hàm số đã cho tại x = 1.
Ta có: ;
;
f(1) = m . 1 + 1 = m + 1.
Để hàm số f(x) liên tục trên ℝ thì , tức là m + 1 = 2.
Suy ra m = 1.
Lời giải
Áp dụng tính chất: Các hàm phân thức hữu tỉ (thương của hai đa thức) liên tục trên tập xác định của chúng.
a)
ĐKXĐ: x2 – 3x + 2 ≠ 0 ⇔ x ≠ 1 hoặc x ≠ 2.
Do đó, tập xác định của hàm số f(x) là D = (– ∞; 1) ∪ (1; 2) ∪ (2; +∞).
Vậy hàm số f(x) liên tục trên các khoảng (– ∞; 1), (1; 2), (2; +∞).
Lời giải
b)
ĐKXĐ: x2 + 3x – 4 ≠ 0 ⇔ x ≠ – 4 hoặc x ≠ 1.
Do đó, tập xác định của hàm số g(x) là D = (– ∞; – 4) ∪ (– 4; 1) ∪ (1; +∞).
Vậy hàm số g(x) liên tục trên các khoảng (– ∞; – 4), (– 4; 1), (1; +∞).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.