Giải SBT Toán 11 KNTT Bài 2. Công thức lượng giác có đáp án
42 người thi tuần này 4.6 667 lượt thi 6 câu hỏi
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
33 câu trắc nghiệm Toán 11 Kết nối tri thức Bài 29: Công thức cộng xác suất có đáp án
10 Bài tập Biểu diễn góc lượng giác trên đường tròn lượng giác (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Lời giải
cos 105° = cos(60° + 45°) = cos 60° cos 45° – sin 60° sin 45°
\( = \frac{1}{2}.\frac{{\sqrt 2 }}{2} - \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 - \sqrt 6 }}{4}\).
sin 105° = sin(60° + 45°) = sin 60° cos 45° + cos 60° sin 45°
\( = \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 2 }}{2} + \frac{1}{2}.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 + \sqrt 6 }}{4}\).
Do đó, \(\tan 105^\circ = \frac{{\sin 105^\circ }}{{\cos 105^\circ }} = \frac{{\sqrt 2 + \sqrt 6 }}{{\sqrt 2 - \sqrt 6 }},\,\,\cot 105^\circ = \frac{1}{{\tan 105^\circ }} = \frac{{\sqrt 2 - \sqrt 6 }}{{\sqrt 2 + \sqrt 6 }}\).
Lời giải
Lời giải
Vì \(\frac{\pi }{4}\) < x < \(\frac{\pi }{2}\) nên sin x > 0, cos x > 0. Áp dụng công thức hạ bậc, ta có
\({\sin ^2}x = \frac{{1 - \cos 2x}}{2} = \frac{{1 - \left( { - \frac{4}{5}} \right)}}{2} = \frac{9}{{10}}\) ⇒ sin x = \(\frac{3}{{\sqrt {10} }}\).
\({\cos ^2}x = \frac{{1 + \cos 2x}}{2} = \frac{{1 + \left( { - \frac{4}{5}} \right)}}{2} = \frac{1}{{10}}\) ⇒ cos x = \(\frac{1}{{\sqrt {10} }}\).
Theo công thức nhân đôi, ta có sin 2x = 2 sin x cos x = \(2.\frac{3}{{\sqrt {10} }}.\frac{1}{{\sqrt {10} }} = \frac{6}{{10}} = \frac{3}{5}\).
Theo công thức cộng, ta có
\(\sin \left( {x + \frac{\pi }{3}} \right) = \sin x\cos \frac{\pi }{3} + \cos x\sin \frac{\pi }{3} = \frac{3}{{\sqrt {10} }}.\frac{1}{2} + \frac{1}{{\sqrt {10} }}.\frac{{\sqrt 3 }}{2} = \frac{{3 + \sqrt 3 }}{{2\sqrt {10} }}\).
\[\cos \left( {2x - \frac{\pi }{4}} \right) = \cos 2x\cos \frac{\pi }{4} + \sin 2x\sin \frac{\pi }{4} = \left( { - \frac{4}{5}} \right).\frac{{\sqrt 2 }}{2} + \frac{3}{5}.\frac{{\sqrt 2 }}{2} = - \frac{{\sqrt 2 }}{{10}}\].
Lời giải
Lời giải
sin4 a + cos4 a = (sin2 a + cos2 a)2 – 2sin2 a cos2 a = 1 – 2 . (sin a cos a)2
= \(1 - 2.{\left( {\frac{{\sin 2a}}{2}} \right)^2} = 1 - \frac{1}{2}{\sin ^2}2a\)\( = 1 - \frac{1}{2}.\frac{{1 - \cos 4a}}{2} = 1 - \frac{{1 - \cos 4a}}{4} = \frac{3}{4} + \frac{1}{4}\cos 4a\).
Vậy \({\sin ^4}a + {\cos ^4}a = 1 - \frac{1}{2}{\sin ^2}2a = \frac{3}{4} + \frac{1}{4}\cos 4a\).
Lời giải
Lời giải
a) \(A = \sin \frac{\pi }{9} - \sin \frac{{5\pi }}{9} + \sin \frac{{7\pi }}{9}\)
\( = \left( {\sin \frac{\pi }{9} + \sin \frac{{7\pi }}{9}} \right) - \sin \frac{{5\pi }}{9}\)
\( = 2\sin \frac{{\frac{\pi }{9} + \frac{{7\pi }}{9}}}{2}.\cos \frac{{\frac{\pi }{9} - \frac{{7\pi }}{9}}}{2} - \sin \frac{{5\pi }}{9}\)
\( = 2\sin \frac{{4\pi }}{9}.\cos \frac{\pi }{3} - \sin \frac{{5\pi }}{9}\)
\( = \sin \frac{{4\pi }}{9} - \sin \frac{{5\pi }}{9}\)
\( = \sin \left( {\pi - \frac{{4\pi }}{9}} \right) - \sin \frac{{5\pi }}{9}\)
\( = \sin \frac{{5\pi }}{9} - \sin \frac{{5\pi }}{9} = 0\).
Vậy A = 0.
b) Vì sin 78° = cos 12°; sin 66° = cos 24°; sin 42° = cos 48° nên
B = sin 6° cos 12° cos 24° cos 48°.
Nhân hai vế với cos 6° và áp dụng công thức góc nhân đôi, ta được:
cos 6° . B = cos 6° sin 6° cos 12° cos 24° cos 48°
= \(\frac{1}{2}\sin 12^\circ \) cos 12° cos 24° cos 48°
= \(\frac{1}{4}\) sin 24° cos 24° cos 48°
= \(\frac{1}{8}\) sin 48° cos 48°
= \(\frac{1}{{16}}\)sin 96°
= \(\frac{1}{{16}}\)sin(90° + 6°) = \(\frac{1}{{16}}\)cos 6°.
Vậy B = \(\frac{1}{{16}}\).
Lời giải
Lời giải
a) \(VP = \sqrt 2 \cos \left( {a + \frac{\pi }{4}} \right) = \sqrt 2 \left( {\cos a\cos \frac{\pi }{4} - \sin a\sin \frac{\pi }{4}} \right)\)\( = \sqrt 2 \left( {\frac{{\sqrt 2 }}{2}\cos a - \frac{{\sqrt 2 }}{2}\sin a} \right)\)
\( = \sqrt 2 .\frac{{\sqrt 2 }}{2}\left( {\cos a - \sin a} \right) = \cos a - \sin a = VT\).
b) \(VP = 2\sin \left( {a + \frac{\pi }{3}} \right) = 2\left( {\sin a\cos \frac{\pi }{3} + \cos a\sin \frac{\pi }{3}} \right)\)
\( = 2\left( {\frac{1}{2}\sin a + \frac{{\sqrt 3 }}{2}\cos a} \right)\)\( = \sin a + \sqrt 3 \cos a = VT\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
133 Đánh giá
50%
40%
0%
0%
0%