Câu hỏi:
13/07/2024 12,667Chứng minh rằng trong mọi tam giác ABC ta đều có
sin A + sin B + sin C = \(4\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}\).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải
\(VT = \sin A + \sin B + \sin C\)\( = 2\sin \frac{{A + B}}{2}\cos \frac{{A - B}}{2} + 2\sin \frac{C}{2}\cos \frac{C}{2}\).
Mặt khác, trong tam giác ABC, ta có A + B + C = π nên \(\frac{{A + B}}{2} = \frac{\pi }{2} - \frac{C}{2}\).
Từ đó suy ra: \(\sin \frac{{A + B}}{2} = \cos \frac{C}{2},\,\sin \frac{C}{2} = \cos \frac{{A + B}}{2}\).
Vậy \(VT = 2\sin \frac{{A + B}}{2}\cos \frac{{A - B}}{2} + 2\sin \frac{C}{2}\cos \frac{C}{2}\)
\( = 2\cos \frac{C}{2}\cos \frac{{A - B}}{2} + 2\cos \frac{{A + B}}{2}\cos \frac{C}{2}\)
\( = 2\cos \frac{C}{2}\left( {\cos \frac{{A - B}}{2} + \cos \frac{{A + B}}{2}} \right)\)
\( = 2\cos \frac{C}{2}.2\cos \frac{{\frac{{A - B}}{2} + \frac{{A + B}}{2}}}{2}\cos \frac{{\frac{{A - B}}{2} - \frac{{A + B}}{2}}}{2}\)
\( = 4\cos \frac{C}{2}\cos \frac{A}{2}\cos \left( { - \frac{B}{2}} \right)\)
\( = 4\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2} = VP\) (điều phải chứng minh).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho cos 2x = \( - \frac{4}{5}\) với \(\frac{\pi }{4} < x < \frac{\pi }{2}\).
Tính sin x, cos x, \(\sin \left( {x + \frac{\pi }{3}} \right)\), \(\cos \left( {2x - \frac{\pi }{4}} \right)\).
Câu 2:
Tính giá trị của các biểu thức sau:
a) \(A = \sin \frac{\pi }{9} - \sin \frac{{5\pi }}{9} + \sin \frac{{7\pi }}{9}\);
b) B = sin 6° sin 42° sin 66° sin 78°.
Câu 3:
Chứng minh đẳng thức sau
\({\sin ^4}a + {\cos ^4}a = 1 - \frac{1}{2}{\sin ^2}2a = \frac{3}{4} + \frac{1}{4}\cos 4a\).
Câu 4:
Câu 5:
Chứng minh rằng:
a) \(\cos a - \sin a = \sqrt 2 \cos \left( {a + \frac{\pi }{4}} \right)\);
b) \(\sin a + \sqrt 3 \cos a = 2\sin \left( {a + \frac{\pi }{3}} \right)\).
về câu hỏi!