Giải SBT Toán 11 KNTT Bài 24. Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng có đáp án
52 người thi tuần này 4.6 596 lượt thi 8 câu hỏi
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
10 Bài tập Biểu diễn góc lượng giác trên đường tròn lượng giác (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
33 câu trắc nghiệm Toán 11 Kết nối tri thức Bài 29: Công thức cộng xác suất có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Kẻ AH ^ (BCD) tại H, ta có BH là hình chiếu vuông góc của AB trên mặt phẳng (BCD) nên góc giữa đường thẳng AB và mặt phẳng (BCD) bằng góc giữa hai đường AB và BH, mà (AB, BH) = .
Vì AB = AC = AD nên HD = HB = HC hay H là tâm của tam giác BCD.
Gọi M là giao điểm của BH là CD.
Vì tam giác BCD đều cạnh a nên BM là đường cao, trung tuyến và , suy ra .
Xét tam giác ABH vuông tại H có: .
Vậy côsin của góc giữa đường thẳng AB và mặt phẳng (BCD) bằng .
Lời giải

a) Vì SA ^ (ABCD) nên AC là hình chiếu vuông góc của SC trên mặt phẳng (ABCD). Do đó góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng góc giữa hai đường thẳng SC và AC, mà (SC, AC) = .
Do ABCD là hình vuông cạnh a nên AC2 = AB2 + BC2 = 2a2 ⇒.
Vì SA ^ (ABCD) nên SA ^ AC mà nên tam giác SAC vuông cân tại A. Do đó .
Vậy góc giữa đường thẳng SC và mặt phẳng (ABCD) là 45°.
Lời giải
b) Vì SA ^ (ABCD) nên BC ^ SA mà BC ^ AB nên BC ^ (SAB), suy ra SB là hình chiếu vuông góc của SC trên mặt phẳng (SAB).
Do đó, góc giữa đường thẳng SC và mặt phẳng (SAB) bằng góc giữa đường thẳng SC và đường thẳng SB, mà .
Xét tam giác SAB vuông tại A, có
Xét tam giác SBC vuông tại B, ta có: .
Vậy tang của góc giữa đường thẳng SC và mặt phẳng (SAB) bằng .
Lời giải
Gọi O là giao điểm của A'C' và B'D'.
Khi đó, O là trung điểm của A'C' và B'D'.
Theo đề bài ta có O là hình chiếu của A trên mặt phẳng (A'B'C'D').
Do đó, A'O là hình chiếu vuông góc của AA' trên mặt phẳng (A'B'C'D'). Khi đó góc giữa đường thẳng AA' và mặt phẳng (A'B'C'D') bằng góc giữa AA' và A'O. Mà .
Vì hình hộp ABCD.A'B'C'D' có đáy ABCD là hình vuông cạnh a nên A'B'C'D' là hình vuông cạnh a. Do đó A'C'2 = A'B'2 + B'C'2 = a2 + a2 = 2a2 ⇒ .
.
Vậy góc giữa đường thẳng AA' và mặt phẳng (A'B'C'D') bằng 60°.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.