Câu hỏi:

12/07/2024 920

Lực hấp dẫn tác dụng lên một đơn vị khối lượng ở khoảng cách r tính từ tâm Trái Đất là

\(F\left( r \right) = \left\{ \begin{array}{l}\frac{{GMr}}{{{R^3}}}\,\,\,\,n\^e 'u\,\,\,r < R\\\frac{{GM}}{{{r^2}}}\,\,\,\,\,\,n\^e 'u\,\,\,r \ge R,\end{array} \right.\)

trong đó M và R lần lượt là khối lượng và bán kính của Trái Đất, G là hằng số hấp dẫn. Xét tính liên tục của hàm số F(r).

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Vì M và R lần lượt là khối lượng và bán kính của Trái Đất, G là hằng số hấp dẫn, do đó M, R, G đều khác 0, r là khoảng cách nên r > 0.

Ta có: \(F\left( r \right) = \left\{ \begin{array}{l}\frac{{GMr}}{{{R^3}}}\,\,\,\,n\^e 'u\,\,\,r < R\\\frac{{GM}}{{{r^2}}}\,\,\,\,\,\,n\^e 'u\,\,\,r \ge R,\end{array} \right.\). Tập xác định của hàm số F(r) là (0; +∞).

+) Với r < R thì F(r) = \(\frac{{GMr}}{{{R^3}}}\) hay F(r) = \(\frac{{GM}}{{{R^3}}}.r\) là hàm đa thức nên nó liên tục trên (0; R).

+) Với r > R thì F(r) = \(\frac{{GM}}{{{r^2}}}\) là hàm phân thức nên nó liên tục trên (R; +∞).

+) Tại r = R, ta có F(R) = \(\frac{{GM}}{{{R^2}}}\).

\(\mathop {\lim }\limits_{r \to {R^ + }} F\left( r \right) = \mathop {\lim }\limits_{r \to {R^ + }} \frac{{GM}}{{{r^2}}} = \frac{{GM}}{{{R^2}}}\); \(\mathop {\lim }\limits_{r \to {R^ - }} f\left( R \right) = \mathop {\lim }\limits_{r \to {R^ - }} \frac{{GMr}}{{{R^3}}} = \frac{{GMR}}{{{R^3}}} = \frac{{GM}}{{{R^2}}}\).

Do đó, \(\mathop {\lim }\limits_{r \to {R^ + }} F\left( r \right) = \mathop {\lim }\limits_{r \to {R^ - }} F\left( r \right) = \frac{{GM}}{{{R^2}}}\) nên \(\mathop {\lim }\limits_{r \to R} F\left( r \right) = \frac{{GM}}{{{R^2}}} = F\left( R \right)\).

Suy ra hàm số F(r) liên tục tại r = R.

Vậy hàm số F(r) liên tục trên (0; +∞).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to 7} \frac{{\sqrt {x + 2} - 3}}{{x - 7}}\);

b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 1}}{{{x^2} - 1}}\);

c) \(\mathop {\lim }\limits_{x \to 1} \frac{{2 - x}}{{{{\left( {1 - x} \right)}^2}}}\);

d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x + 2}}{{\sqrt {4{x^2} + 1} }}\).

Xem đáp án » 11/07/2024 8,748

Câu 2:

Cho cấp số nhân lùi vô hạn (un) với \({u_n} = \frac{2}{{{3^n}}}.\) Tổng của cấp số nhân này bằng

A. 3.

B. 2.

C. 1.

D. 6.

Xem đáp án » 12/07/2024 5,102

Câu 3:

Cho \({u_n} = \frac{{2 + {2^2} + ... + {2^n}}}{{{2^n}}}\). Giới hạn của dãy số (un) bằng

A. 1.

B. 2.

C. – 1.

D. 0.

Xem đáp án » 12/07/2024 4,363

Câu 4:

Cho hàm số \(f\left( x \right) = \frac{{x - {x^2}}}{{\left| x \right|}}\). Khi đó \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right)\) bằng

A. 0.

B. 1.

C. +∞.

D. – 1.

Xem đáp án » 12/07/2024 3,600

Câu 5:

Cho dãy số (un) với \({u_n} = \sqrt {{n^2} + 1} - \sqrt n \). Mệnh đề đúng là

A. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = - \infty \).

B. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 1\).

C. \[\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty \].

D. \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\).

Xem đáp án » 12/07/2024 3,345

Câu 6:

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} + x - 2}}{{x - 1}}\,\,\,\,n\^e 'u\,\,\,x \ne 1\\a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,\,x = 1\end{array} \right..\) Hàm số f(x) liên tục tại x = 1 khi

A. a = 0.

B. a = 3.

C. a = – 1.

D. a = 1.

Xem đáp án » 12/07/2024 3,331

Câu 7:

Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho.

a) \(f\left( x \right) = \left\{ \begin{array}{l}\frac{1}{x}\,\,\,n\^e 'u\,\,x \ne 0\\1\,\,\,\,\,\,n\^e 'u\,\,x = 0\end{array} \right.\) tại điểm x = 0;

b) \(g\left( x \right) = \left\{ \begin{array}{l}1 + x\,\,\,n\^e 'u\,\,x < 1\\2 - x\,\,\,n\^e 'u\,\,x \ge 1\end{array} \right.\) tại điểm x = 1.

Xem đáp án » 12/07/2024 2,783

Bình luận


Bình luận