Câu hỏi:

13/07/2024 6,427

Từ đồ thị hàm số y = sin x, hãy xác định các giá trị của x trên đoạn \(\left[ { - \frac{{3\pi }}{2};\,\,\frac{{5\pi }}{2}} \right]\) sao cho:

a) sin x = 0;                                b) sin x > 0. 

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Trên đoạn \(\left[ { - \frac{{3\pi }}{2};\,\,\frac{{5\pi }}{2}} \right]\), đồ thị hàm số y = sinx cắt trục Ox tại bốn điểm x = − π, x = 0, x = π và x = 2π. Suy ra có bốn giá trị của x để sin x = 0 trên đoạn \(\left[ { - \frac{{3\pi }}{2};\,\,\frac{{5\pi }}{2}} \right]\) là x = − π, x = 0, x = π và x = 2π.

b) Giải bất phương trình sinx > 0 là tìm những khoảng giá trị của x mà đồ thị hàm số y = sinx nằm phía trên trục Ox. Từ đó, ta được tập nghiệm của bất phương trình sinx > 0 trên đoạn \(\left[ { - \frac{{3\pi }}{2};\,\,\frac{{5\pi }}{2}} \right]\) là \(S = \left( { - \frac{{3\pi }}{2}; - \pi } \right) \cup \left( {0;\,\,\pi } \right) \cup \left( {2\pi ;\,\,\frac{{5\pi }}{2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hằng ngày, Mặt Trời chiếu sáng, bóng của một toà chung cư cao 40 m in trên mặt đất, độ dài bóng của toà nhà này được tính bằng công thức

\(S\left( t \right) = 40\left| {\cot \frac{\pi }{{12}}t} \right|\),

ở đó S được tính bằng mét, còn t là số giờ tính từ 6 giờ sáng.

a) Tìm độ dài bóng của toà nhà tại các thời điểm 8 giờ sáng, 12 giờ trưa, 2 giờ chiều và 5 giờ 45 phút chiều.

b) Tại thời điểm nào thì độ dài bóng của toà nhà bằng chiều cao toà nhà?

c) Bóng toà nhà sẽ như thế nào khi thời gian tiến dần đến 6 giờ tối?

Xem đáp án » 13/07/2024 24,528

Câu 2:

Một con lắc lò xo dao động điều hoà quanh

vị trí cân bằng theo phương trình y = 25 sin 4πt ở đó y được tính bằng centimét còn thời gian t được tính bằng giây.

a) Tìm chu kì dao động của con lắc lò xo.

b) Tìm tần số dao động của con lắc, tức là số lần dao động trong một giây.

c) Tìm khoảng cách giữa điểm cao nhất và thấp nhất của con lắc.

Media VietJack

Xem đáp án » 13/07/2024 15,143

Câu 3:

Tìm tập xác định của các hàm số sau:

a) y = cot 3x;

b) \[y = \sqrt {1 - \cos 4x} \];

c) \(y = \frac{{\cos 2x}}{{{{\sin }^2}x - {{\cos }^2}x}}\);

d) \(y = \sqrt {\frac{{1 + \cos 2x}}{{1 - \sin 2x}}} \).

Xem đáp án » 13/07/2024 11,901

Câu 4:

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:

a) y = 2 + 3|cosx|;

b) y = \(2\sqrt {\sin x} \) + 1;

c) y = 3 cos2 x + 4 cos2x;

d) y = sin x + cos x.

Xem đáp án » 13/07/2024 9,593

Câu 5:

Xét tính chẵn lẻ của các hàm số sau:

a) \(y = \frac{{\cos 2x}}{{{x^3}}}\);

b) y = x – sin 3x;

c) \(y = \sqrt {1 + \cos x} \);

d) \(y = 1 + \cos x\sin \left( {\frac{{3\pi }}{2} - 2x} \right)\).

Xem đáp án » 13/07/2024 5,913

Câu 6:

Với giá trị nào của x, mỗi đẳng thức sau đúng?

a) tan x cot x = 1;

b) 1 + tan2 x = \(\frac{1}{{{{\cos }^2}x}}\);

c) 1 + cot2 x = \(\frac{1}{{{{\sin }^2}x}}\);

d) tan x + cot x = \(\frac{2}{{\sin 2x}}\).

Xem đáp án » 13/07/2024 3,523

Bình luận


Bình luận
Vietjack official store