Câu hỏi:

13/07/2024 9,378

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:

a) y = 2 + 3|cosx|;

b) y = \(2\sqrt {\sin x} \) + 1;

c) y = 3 cos2 x + 4 cos2x;

d) y = sin x + cos x.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Vì 0 ≤ |cos x| ≤ 1 nên 0 ≤ 3|cos x| ≤ 3, do đó 2 ≤ 2 + 3|cos x| ≤ 5 với mọi x ℝ.

Vậy giá trị lớn nhất của hàm số là 5, đạt được khi

|cos x| = 1 sin x = 0 x = kπ (k ℤ).

và giá trị nhỏ nhất của hàm số là 2, đạt được khi

cos x = 0 x = \(\frac{\pi }{2}\) + kπ (k ℤ).

b) Điều kiện sin x ≥ 0. Vì 0 ≤ \(\sqrt {\sin x} \) ≤ 1 nên 0 ≤ 2\(\sqrt {\sin x} \) ≤ 2,

do đó 1 ≤ 2\(\sqrt {\sin x} \) + 1 ≤ 3 với mọi x thoả mãn 0 ≤ sin x ≤ 1.

Vậy giá trị lớn nhất của hàm số là 3, đạt được khi sin x = 1 hay \(x = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Giá trị nhỏ nhất của hàm số là 1, đạt được khi sin x = 0 hay x = kπ (k ℤ).

c) Ta có y = 3 cos2 x + 4 cos2x \( = 3.\frac{{1 + \cos 2x}}{2} + 4\cos 2x\)\( = \frac{3}{2} + \frac{{11}}{2}\cos 2x\).

Vì – 1 ≤ cos2x ≤ 1 nên \( - \frac{{11}}{2} \le \frac{{11}}{2}\cos 2x \le \frac{{11}}{2}\),

do đó \( - 4 = \frac{3}{2} - \frac{{11}}{2} \le \frac{3}{2} + \frac{{11}}{2}\cos 2x \le \frac{3}{2} + \frac{{11}}{2} = 7\) với mọi x ℝ.

Vậy giá trị lớn nhất của hàm số là 7, đạt được khi

cos 2x = 1 2x = k2π x = kπ (k ℤ).

và giá trị nhỏ nhất của hàm số là – 4, đạt được khi

cos 2x = – 1 2x = π + k2π x = \(\frac{\pi }{2}\) + kπ (k ℤ).

d) Ta có y = sin x + cos x = \(\sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right)\).

Vì \( - 1 \le \sin \left( {x + \frac{\pi }{4}} \right) \le 1\) nên \( - \sqrt 2 \le \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) \le \sqrt 2 \), với mọi x ℝ.

Vậy giá trị lớn nhất của hàm số là \(\sqrt 2 \), đạt được khi \(\sin \left( {x + \frac{\pi }{4}} \right) = 1\)

\[ \Leftrightarrow x + \frac{\pi }{4} = \frac{\pi }{2} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\] hay \[x = \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\].

Giá trị nhỏ nhất của hàm số là \( - \sqrt 2 \), đạt được khi \(\sin \left( {x + \frac{\pi }{4}} \right) = - 1\)

\[ \Leftrightarrow x + \frac{\pi }{4} = - \frac{\pi }{2} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\] hay \[x = - \frac{{3\pi }}{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hằng ngày, Mặt Trời chiếu sáng, bóng của một toà chung cư cao 40 m in trên mặt đất, độ dài bóng của toà nhà này được tính bằng công thức

\(S\left( t \right) = 40\left| {\cot \frac{\pi }{{12}}t} \right|\),

ở đó S được tính bằng mét, còn t là số giờ tính từ 6 giờ sáng.

a) Tìm độ dài bóng của toà nhà tại các thời điểm 8 giờ sáng, 12 giờ trưa, 2 giờ chiều và 5 giờ 45 phút chiều.

b) Tại thời điểm nào thì độ dài bóng của toà nhà bằng chiều cao toà nhà?

c) Bóng toà nhà sẽ như thế nào khi thời gian tiến dần đến 6 giờ tối?

Xem đáp án » 13/07/2024 23,158

Câu 2:

Một con lắc lò xo dao động điều hoà quanh

vị trí cân bằng theo phương trình y = 25 sin 4πt ở đó y được tính bằng centimét còn thời gian t được tính bằng giây.

a) Tìm chu kì dao động của con lắc lò xo.

b) Tìm tần số dao động của con lắc, tức là số lần dao động trong một giây.

c) Tìm khoảng cách giữa điểm cao nhất và thấp nhất của con lắc.

Media VietJack

Xem đáp án » 13/07/2024 13,310

Câu 3:

Tìm tập xác định của các hàm số sau:

a) y = cot 3x;

b) \[y = \sqrt {1 - \cos 4x} \];

c) \(y = \frac{{\cos 2x}}{{{{\sin }^2}x - {{\cos }^2}x}}\);

d) \(y = \sqrt {\frac{{1 + \cos 2x}}{{1 - \sin 2x}}} \).

Xem đáp án » 13/07/2024 11,669

Câu 4:

Từ đồ thị hàm số y = sin x, hãy xác định các giá trị của x trên đoạn \(\left[ { - \frac{{3\pi }}{2};\,\,\frac{{5\pi }}{2}} \right]\) sao cho:

a) sin x = 0;                                b) sin x > 0. 

Xem đáp án » 13/07/2024 5,956

Câu 5:

Xét tính chẵn lẻ của các hàm số sau:

a) \(y = \frac{{\cos 2x}}{{{x^3}}}\);

b) y = x – sin 3x;

c) \(y = \sqrt {1 + \cos x} \);

d) \(y = 1 + \cos x\sin \left( {\frac{{3\pi }}{2} - 2x} \right)\).

Xem đáp án » 13/07/2024 5,870

Câu 6:

Với giá trị nào của x, mỗi đẳng thức sau đúng?

a) tan x cot x = 1;

b) 1 + tan2 x = \(\frac{1}{{{{\cos }^2}x}}\);

c) 1 + cot2 x = \(\frac{1}{{{{\sin }^2}x}}\);

d) tan x + cot x = \(\frac{2}{{\sin 2x}}\).

Xem đáp án » 13/07/2024 3,420

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store