Câu hỏi:
13/07/2024 9,592Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
a) y = 2 + 3|cosx|;
b) y = \(2\sqrt {\sin x} \) + 1;
c) y = 3 cos2 x + 4 cos2x;
d) y = sin x + cos x.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
a) Vì 0 ≤ |cos x| ≤ 1 nên 0 ≤ 3|cos x| ≤ 3, do đó 2 ≤ 2 + 3|cos x| ≤ 5 với mọi x ∈ ℝ.
Vậy giá trị lớn nhất của hàm số là 5, đạt được khi
|cos x| = 1 ⇔ sin x = 0 ⇔ x = kπ (k ∈ ℤ).
và giá trị nhỏ nhất của hàm số là 2, đạt được khi
cos x = 0 ⇔ x = \(\frac{\pi }{2}\) + kπ (k ∈ ℤ).
b) Điều kiện sin x ≥ 0. Vì 0 ≤ \(\sqrt {\sin x} \) ≤ 1 nên 0 ≤ 2\(\sqrt {\sin x} \) ≤ 2,
do đó 1 ≤ 2\(\sqrt {\sin x} \) + 1 ≤ 3 với mọi x thoả mãn 0 ≤ sin x ≤ 1.
Vậy giá trị lớn nhất của hàm số là 3, đạt được khi sin x = 1 hay \(x = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
Giá trị nhỏ nhất của hàm số là 1, đạt được khi sin x = 0 hay x = kπ (k ∈ ℤ).
c) Ta có y = 3 cos2 x + 4 cos2x \( = 3.\frac{{1 + \cos 2x}}{2} + 4\cos 2x\)\( = \frac{3}{2} + \frac{{11}}{2}\cos 2x\).
Vì – 1 ≤ cos2x ≤ 1 nên \( - \frac{{11}}{2} \le \frac{{11}}{2}\cos 2x \le \frac{{11}}{2}\),
do đó \( - 4 = \frac{3}{2} - \frac{{11}}{2} \le \frac{3}{2} + \frac{{11}}{2}\cos 2x \le \frac{3}{2} + \frac{{11}}{2} = 7\) với mọi x ∈ ℝ.
Vậy giá trị lớn nhất của hàm số là 7, đạt được khi
cos 2x = 1 ⇔ 2x = k2π ⇔ x = kπ (k ∈ ℤ).
và giá trị nhỏ nhất của hàm số là – 4, đạt được khi
cos 2x = – 1 ⇔ 2x = π + k2π ⇔ x = \(\frac{\pi }{2}\) + kπ (k ∈ ℤ).
d) Ta có y = sin x + cos x = \(\sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right)\).
Vì \( - 1 \le \sin \left( {x + \frac{\pi }{4}} \right) \le 1\) nên \( - \sqrt 2 \le \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) \le \sqrt 2 \), với mọi x ∈ ℝ.
Vậy giá trị lớn nhất của hàm số là \(\sqrt 2 \), đạt được khi \(\sin \left( {x + \frac{\pi }{4}} \right) = 1\)
\[ \Leftrightarrow x + \frac{\pi }{4} = \frac{\pi }{2} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\] hay \[x = \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\].
Giá trị nhỏ nhất của hàm số là \( - \sqrt 2 \), đạt được khi \(\sin \left( {x + \frac{\pi }{4}} \right) = - 1\)
\[ \Leftrightarrow x + \frac{\pi }{4} = - \frac{\pi }{2} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\] hay \[x = - \frac{{3\pi }}{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hằng ngày, Mặt Trời chiếu sáng, bóng của một toà chung cư cao 40 m in trên mặt đất, độ dài bóng của toà nhà này được tính bằng công thức
\(S\left( t \right) = 40\left| {\cot \frac{\pi }{{12}}t} \right|\),
ở đó S được tính bằng mét, còn t là số giờ tính từ 6 giờ sáng.
a) Tìm độ dài bóng của toà nhà tại các thời điểm 8 giờ sáng, 12 giờ trưa, 2 giờ chiều và 5 giờ 45 phút chiều.
b) Tại thời điểm nào thì độ dài bóng của toà nhà bằng chiều cao toà nhà?
c) Bóng toà nhà sẽ như thế nào khi thời gian tiến dần đến 6 giờ tối?
Câu 2:
Một con lắc lò xo dao động điều hoà quanh
vị trí cân bằng theo phương trình y = 25 sin 4πt ở đó y được tính bằng centimét còn thời gian t được tính bằng giây.
a) Tìm chu kì dao động của con lắc lò xo.
b) Tìm tần số dao động của con lắc, tức là số lần dao động trong một giây.
c) Tìm khoảng cách giữa điểm cao nhất và thấp nhất của con lắc.
Câu 3:
Tìm tập xác định của các hàm số sau:
a) y = cot 3x;
b) \[y = \sqrt {1 - \cos 4x} \];
c) \(y = \frac{{\cos 2x}}{{{{\sin }^2}x - {{\cos }^2}x}}\);
d) \(y = \sqrt {\frac{{1 + \cos 2x}}{{1 - \sin 2x}}} \).
Câu 4:
Từ đồ thị hàm số y = sin x, hãy xác định các giá trị của x trên đoạn \(\left[ { - \frac{{3\pi }}{2};\,\,\frac{{5\pi }}{2}} \right]\) sao cho:
a) sin x = 0; b) sin x > 0.
Câu 5:
Xét tính chẵn lẻ của các hàm số sau:
a) \(y = \frac{{\cos 2x}}{{{x^3}}}\);
b) y = x – sin 3x;
c) \(y = \sqrt {1 + \cos x} \);
d) \(y = 1 + \cos x\sin \left( {\frac{{3\pi }}{2} - 2x} \right)\).
Câu 6:
Với giá trị nào của x, mỗi đẳng thức sau đúng?
a) tan x cot x = 1;
b) 1 + tan2 x = \(\frac{1}{{{{\cos }^2}x}}\);
c) 1 + cot2 x = \(\frac{1}{{{{\sin }^2}x}}\);
d) tan x + cot x = \(\frac{2}{{\sin 2x}}\).
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 1)
100 câu trắc nghiệm Phép dời hình cơ bản (phần 1)
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
về câu hỏi!