Tìm tập xác định của các hàm số sau:
a) y = cot 3x;
b) \[y = \sqrt {1 - \cos 4x} \];
c) \(y = \frac{{\cos 2x}}{{{{\sin }^2}x - {{\cos }^2}x}}\);
d) \(y = \sqrt {\frac{{1 + \cos 2x}}{{1 - \sin 2x}}} \).
Tìm tập xác định của các hàm số sau:
a) y = cot 3x;
b) \[y = \sqrt {1 - \cos 4x} \];
c) \(y = \frac{{\cos 2x}}{{{{\sin }^2}x - {{\cos }^2}x}}\);
d) \(y = \sqrt {\frac{{1 + \cos 2x}}{{1 - \sin 2x}}} \).
Quảng cáo
Trả lời:
Lời giải
a) Biểu thức cot 3x có nghĩa khi sin 3x ≠ 0 hay \(3x \ne k\pi ,\,k \in \mathbb{Z}\) hay \(x \ne k\frac{\pi }{3},\,k \in \mathbb{Z}\).
Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {k\frac{\pi }{3}|k \in \mathbb{Z}} \right\}\).
b) Biểu thức \[\sqrt {1 - \cos 4x} \] có nghĩa với mọi x vì cos 4x ≤ 1 với mọi x hay 1 – cos 4x ≥ 0 với mọi x.
Vậy tập xác định của hàm số là ℝ.
c) Biểu thức \(\frac{{\cos 2x}}{{{{\sin }^2}x - {{\cos }^2}x}} = \frac{{\cos 2x}}{{ - \left( {{{\cos }^2}x - {{\sin }^2}x} \right)}} = \frac{{\cos 2x}}{{ - \cos 2x}}\) có nghĩa khi
cos 2x ≠ 0 hay \(2x \ne \frac{\pi }{2} + k\pi ,\,\,k \in \mathbb{Z}\), tức là \(x \ne \frac{\pi }{4} + k\frac{\pi }{2},\,\,k \in \mathbb{Z}\).
Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\frac{\pi }{2}|\,k \in \mathbb{Z}} \right\}\).
d) Ta có cos 2x ≥ – 1 nên 1 + cos 2x ≥ 0 với mọi x.
sin 2x ≤ 1 nên 1 – sin 2x ≥ 0 với mọi x.
Do đó, biểu thức \(\sqrt {\frac{{1 + \cos 2x}}{{1 - \sin 2x}}} \)có nghĩa khi sin 2x ≠ 1 hay \(2x \ne \frac{\pi }{2} + k2\pi ,\,k \in \mathbb{Z}\), tức là \(x \ne \frac{\pi }{4} + k\pi ,\,k \in \mathbb{Z}\).
Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\pi |\,k \in \mathbb{Z}} \right\}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) - Tại thời điểm 8 giờ sáng ta có t = 8 – 6 = 2. Vậy độ dài bóng của toà nhà tại thời điểm 8 giờ sáng là
\(S\left( 2 \right) = 40\left| {\cot \left( {\frac{\pi }{{12}}.2} \right)} \right| = 40\sqrt 3 \,\,\,\left( m \right)\).
- Tại thời điểm 12 giờ trưa ta có t = 12 – 6 = 6. Vậy độ dài bóng của toà nhà tại thời điểm 12 giờ trưa là
\(S\left( 6 \right) = 40\left| {\cot \left( {\frac{\pi }{{12}}.6} \right)} \right| = 0\,\,\,\left( m \right)\).
Tại thời điểm 12 giờ trưa, Mặt Trời chiếu thẳng đứng từ trên đầu xuống nên toàn bộ toà nhà được chiếu xuống móng của toà nhà.
- Tại thời điểm 2 giờ chiều ta có t = 14 – 6 = 8. Vậy độ dài bóng của toà nhà tại thời điểm 2 giờ chiều là
\(S\left( 8 \right) = 40\left| {\cot \left( {\frac{\pi }{{12}}.8} \right)} \right| = \frac{{40\sqrt 3 }}{3}\,\,\,\left( m \right)\).
- Tại thời điểm 5 giờ 45 chiều tối, ta có t = \(\left( {17 + \frac{3}{4}} \right) - 6 = \frac{{39}}{4}\). Vậy độ dài bóng của toà nhà tại thời điểm 5 giờ 45 chiều tối là
\(S\left( {\frac{{39}}{4}} \right) = 40\left| {\cot \left( {\frac{\pi }{{12}}.\frac{{39}}{4}} \right)} \right| \approx 59,86\,\,\left( m \right)\).
b) Độ dài bóng của toà nhà bằng chiều cao tòa nhà khi
S(t) = 40 \( \Leftrightarrow 40\left| {\cot \frac{\pi }{{12}}t} \right| = 40 \Leftrightarrow \cot \frac{\pi }{{12}}t = \pm 1\)
\( \Leftrightarrow \frac{\pi }{{12}}t = \pm \frac{\pi }{4} + k\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\) ⇔ t = ±3 + 12k (k ∈ ℤ).
Vì 0 ≤ t ≤ 12 nên t = 3 hoặc t = 9, tức là tại thời điểm 9 giờ sáng hoặc 3 giờ chiều thì bóng của toà nhà dài bằng chiều cao của toà nhà.
c) Khi thời gian tiến dần đến 6 giờ tối thì t → 12, vì vậy \(\frac{\pi }{{12}}t \to \pi \), do đó \(\cos \frac{\pi }{{12}}t \to - \infty \).
Như vậy, bóng của toà nhà sẽ tiến ra vô cùng.
Lời giải
Lời giải
a) Hàm số y = 25 sin 4πt tuần hoàn với chu kì T = \(\frac{{2\pi }}{{4\pi }} = \frac{1}{2}\).
Suy ra chu kì dao động của con lắc lò xo (tức là khoảng thời gian để con lắc thực hiện được một dao động toàn phần) là T = \(\frac{1}{2}\) giây.
b) Vì chu kì dao động của con lắc là T = \(\frac{1}{2}\) giây nên trong 1 giây con lắc thực hiện được 2 dao động, tức là tần số dao động của con lắc là \(f = \frac{1}{T}\)= 2 Hz.
c) Vì phương trình dao động của con lắc là y = 25 sin 4πt nên biên độ dao động của nó là A = 25 cm. Từ đó suy ra, khoảng cách giữa điểm cao nhất và điểm thấp nhất của con lắc là 2A = 50 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.