Câu hỏi:

13/07/2024 3,628

Trong hình chóp tứ giác S.ABCD (H.4.19), chỉ ra những đường thẳng:

a) Chéo với đường thẳng SA;

b) Chéo với đường thẳng BC.

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Các đường thẳng chéo với đường thẳng SA là BC và CD.

Giải thích: Nếu hai đường thẳng SA và BC không chéo nhau thì chúng cùng thuộc một mặt phẳng. Khi đó bốn điểm S, A, B, C đồng phẳng, trái với giả thiết S.ABCD là hình chóp. Do đó, hao đường thẳng SA và BC chéo nhau. Tương tự, giải thích được hai đường thẳng SA và CD chéo nhau.

b) Các đường thẳng chéo với đường thẳng BC là SA và SD. Giải thích tương tự câu a.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Xét tam giác SAB có M và N lần lượt là trung điểm của các cạnh SA và SB nên MN là đường trung bình của tam giác SAB, suy ra MN // AB và MN = \(\frac{1}{2}\)AB.

Tương tự ta có PQ là đường trung bình của tam giác SCD nên PQ // CD và PQ = \(\frac{1}{2}\)CD.

Lại có đáy ABCD là hình bình hành nên AB // CD và AB = CD.

Khi đó, MN // PQ và MN = PQ. Vậy tứ giác MNPQ là hình bình hành.

Lời giải

Lời giải:

Media VietJack

a) Vì M thuộc SD nằm trong mặt phẳng (SCD) nên M thuộc mặt phẳng (SCD).

Mà M thuộc mặt phẳng (MAB) nên M là điểm chung của hai mặt phẳng (MAB) và (SCD).

Lại có hai mặt phẳng (MAB) và (SCD) chứa hai đường thẳng song song AB và CD.

Do đó, giao tuyến của hai mặt phẳng (MAB) và (SCD) là đường thẳng m đi qua M và song song với AB, CD.

b) Trong tam giác SCD, đường thẳng m đi qua điểm M và song song với CD cắt cạnh SC tại một điểm N.

Vì N thuộc m và m nằm trong mặt phẳng (MAB) nên N thuộc mặt phẳng (MAB).

Vậy N là giao điểm của đường thẳng SC và mặt phẳng (MAB).

Xét tam giác SCD có M là trung điểm của SD, MN // CD và N thuộc SC nên đường thẳng MN là đường trung bình của tam giác SCD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP