Giải các phương trình sau:
a) (2 + cos x)(3cos 2x – 1) = 0;
b) 2sin 2x – sin 4x = 0;
c) cos6 x – sin6 x = 0;
d) tan 2x cot x = 1.
Giải các phương trình sau:
a) (2 + cos x)(3cos 2x – 1) = 0;
b) 2sin 2x – sin 4x = 0;
c) cos6 x – sin6 x = 0;
d) tan 2x cot x = 1.
Quảng cáo
Trả lời:
Lời giải
a) Ta có (2 + cos x)(3cos 2x – 1) = 0
\( \Leftrightarrow \left[ \begin{array}{l}2 + \cos x = 0\\3\cos 2x - 1 = 0\end{array} \right.\)
+ Phương trình 2 + cos x = 0 vô nghiệm vì – 1 ≤ cos x ≤ 1.
+ Gọi α là góc thoả mãn cos α = \(\frac{1}{3}\). Ta có
3cos 2x – 1 = 0 ⇔ cos 2x = cos α ⇔ 2x = ± α + k2π (k ∈ ℤ) ⇔ x = \( \pm \frac{\alpha }{2}\) + kπ (k ∈ ℤ).
Vậy nghiệm của phương trình đã cho là x = \( \pm \frac{\alpha }{2}\) + kπ (k ∈ ℤ) với cos α = \(\frac{1}{3}\).
b) Ta có 2sin 2x – sin 4x = 0
⇔ 2sin 2x – 2sin 2x cos 2x = 0
⇔ 2sin 2x(1 – cos2x) = 0
\( \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\\cos 2x = 1\end{array} \right.\)
Do sin2 2x + cos2 2x = 1 nên cos 2x = 1 kéo theo sin 2x = 0, do đó phương trình đã cho tương đương với
sin 2x = 0 ⇔ 2x = kπ (k ∈ ℤ) \( \Leftrightarrow x = k\frac{\pi }{2}\,\,\left( {k \in \mathbb{Z}} \right)\).
c) Ta có cos6 x – sin6 x = 0
⇔ cos6 x = sin6 x
⇔ (cos2 x)3 = (sin2 x)3
⇔ cos2 x = sin2 x
⇔ cos2 x – sin2 x = 0
⇔ cos 2x = 0
Từ đó ta được 2x = \(\frac{\pi }{2}\) + kπ (k ∈ ℤ) hay \(x = \frac{\pi }{4} + k\frac{\pi }{2}\,\,\left( {k \in \mathbb{Z}} \right)\).
d) Điều kiện sin x ≠ 0 và cos 2x ≠ 0.
Ta có tan 2x cot x = 1
\( \Leftrightarrow \tan 2x = \frac{1}{{\cot x}}\)
⇔ tan 2x = tan x
⇔ 2x = x + kπ (k ∈ ℤ)
⇔ x = kπ (k ∈ ℤ).
Ta thấy x = kπ (k ∈ ℤ) không thoả mãn điều kiện sin x ≠ 0.
Vậy phương trình đã cho vô nghiệm.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Vì \( - 1 \le \sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) \le 1\) nên \( - 2,83 \le 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) \le 2,83\), do đó
\(12 - 2,83 \le 12 + 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) \le 12 + 2,83\)
hay \(9,17 \le 12 + 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) \le 14,83\,\,\,\forall t \in \mathbb{R}\).
a) Ngày thành phố A có ít giờ ánh sáng mặt trời nhất ứng với \(\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) = - 1\)
\( \Leftrightarrow \frac{{2\pi }}{{365}}\left( {t - 80} \right) = - \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow t = - \frac{{45}}{4} + 365k\,\,\left( {k \in \mathbb{Z}} \right)\)
Vì 0 < t ≤ 365 nên k = 1 suy ra t = \( - \frac{{45}}{4}\) + 365 = 353,75.
Như vậy, vào ngày thứ 353 của năm, tức là khoảng ngày 20 tháng 12 thì thành phố A sẽ có ít giờ ánh sáng mặt trời nhất.
b) Ngày thành phố A có nhiều giờ ánh sáng mặt trời nhất ứng với \(\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) = 1\)
\( \Leftrightarrow \frac{{2\pi }}{{365}}\left( {t - 80} \right) = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow t = \frac{{685}}{4} + 365k\,\,\left( {k \in \mathbb{Z}} \right)\)
Vì 0 < t ≤ 365 nên k = 0 suy ra t = \(\frac{{685}}{4}\) = 171,25.
Như vậy, vào ngày thứ 171 của năm, tức là khoảng ngày 20 tháng 6 thì thành phố A sẽ có nhiều giờ ánh sáng mặt trời nhất.
c) Thành phố A có khoảng 10 giờ ánh sáng mặt trời trong ngày nếu
\(12 + 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) = 10\)
\[ \Leftrightarrow \sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right) = - \frac{{200}}{{283}}\]
\( \Leftrightarrow \left[ \begin{array}{l}\frac{{2\pi }}{{365}}\left( {t - 80} \right) \approx - 0,78 + k2\pi \\\frac{{2\pi }}{{365}}\left( {t - 80} \right) \approx 3,93 + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
Từ đó ta được \(\left[ \begin{array}{l}t \approx 34,69 + 365k\\t \approx 308,3 + 365k\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
Vì 0 < t ≤ 365 nên k = 0 suy ra t ≈ 34,69 hoặc t ≈ 308,3.
Như vậy, vào khoảng ngày thứ 34 của năm, tức là ngày 3 tháng 2 và ngày thứ 308 của năm, tức là ngày 4 tháng 11 thành phố A sẽ có 10 giờ ánh sáng mặt trời.
Lời giải
Lời giải
a) Vì \( - 1 \le \sin 2\pi \left( {x - \frac{1}{4}} \right) \le 1\) nên \( - 2,5 \le 2,5\sin 2\pi \left( {x - \frac{1}{4}} \right) \le 2,5\) và do đó ta có
\(2 - 2,5 \le 2 + 2,5\sin 2\pi \left( {x - \frac{1}{4}} \right) \le 2 + 2,5\)
hay \( - 0,5 \le 2 + 2,5\sin 2\pi \left( {x - \frac{1}{4}} \right) \le 4,5\,\,\forall x \in \mathbb{R}\).
Suy ra, gầu ở vị trí cao nhất khi \(\sin 2\pi \left( {x - \frac{1}{4}} \right) = 1\)\( \Leftrightarrow 2\pi \left( {x - \frac{1}{4}} \right) = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow x = \frac{1}{2} + k\,\,\left( {k \in \mathbb{Z}} \right)\). Do x ≥ 0 nên \(x = \frac{1}{2} + k\,\,\left( {k \in \mathbb{N}} \right)\).
Vậy gầu ở vị trí cao nhất tại các thời điểm \(\frac{1}{2},\,\,\frac{3}{2},\,\,\frac{5}{2},...\) phút.
Tương tự, gầu ở vị trí thấp nhất khi \(\sin 2\pi \left( {x - \frac{1}{4}} \right) = - 1\)\( \Leftrightarrow 2\pi \left( {x - \frac{1}{4}} \right) = - \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow x = k\,\,\left( {k \in \mathbb{Z}} \right)\). Do x ≥ 0 nên \(x = k\,\,\left( {k \in \mathbb{N}} \right)\).
Vậy gàu ở vị trí thấp nhất tại các thời điểm 0, 1, 2, 3, ... phút.
b) Gầu cách mặt nước 2 m khi \(2 + 2,5\sin 2\pi \left( {x - \frac{1}{4}} \right) = 2\)
\( \Leftrightarrow \sin 2\pi \left( {x - \frac{1}{4}} \right) = 0\)
\( \Leftrightarrow 2\pi \left( {x - \frac{1}{4}} \right) = k\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow x = \frac{1}{4} + \frac{k}{2}\,\,\left( {k \in \mathbb{Z}} \right)\).
Do x ≥ 0 nên \(x = \frac{1}{4} + \frac{k}{2}\,\,\left( {k \in \mathbb{N}} \right)\).
Vậy chiếc gầu cách mặt nước 2 m lần đầu tiên tại thời điểm \(x = \frac{1}{4}\) phút.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
