Câu hỏi:

13/07/2024 5,214

Giải các phương trình sau:

a) \(2\sin \left( {\frac{x}{3} + 15^\circ } \right) + \sqrt 2 = 0\);

b) \(\cos \left( {2x + \frac{\pi }{5}} \right) = - 1\);

c) 3tan 2x + \(\sqrt 3 \) = 0;

d) cot (2x – 3) = cot 15°.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) \(2\sin \left( {\frac{x}{3} + 15^\circ } \right) + \sqrt 2 = 0\)

\( \Leftrightarrow \sin \left( {\frac{x}{3} + 15^\circ } \right) = - \frac{{\sqrt 2 }}{2}\)

\( \Leftrightarrow \sin \left( {\frac{x}{3} + 15^\circ } \right) = \sin \left( { - 45^\circ } \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}\frac{x}{3} + 15^\circ = - 45^\circ + k360^\circ \\\frac{x}{3} + 15^\circ = 180^\circ - \left( { - 45^\circ } \right) + k360^\circ \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}x = - 180^\circ + k1080^\circ \\x = 630^\circ + k1080^\circ \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

b) \(\cos \left( {2x + \frac{\pi }{5}} \right) = - 1\)

\( \Leftrightarrow 2x + \frac{\pi }{5} = \pi + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow x = \frac{{2\pi }}{5} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

c) 3tan 2x + \(\sqrt 3 \) = 0

\( \Leftrightarrow \tan 2x =  - \frac{{\sqrt 3 }}{3}\)

\( \Leftrightarrow \tan 2x = \tan \left( { - \frac{\pi }{6}} \right)\)

\( \Leftrightarrow 2x = - \frac{\pi }{6} + k\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\)

\( \Leftrightarrow x = - \frac{\pi }{{12}} + k\frac{\pi }{2}\,\,\left( {k \in \mathbb{Z}} \right)\).

d) cot (2x – 3) = cot 15°

2x – 3 = 15° + k180° (k ℤ)

2x = 3 + 15° + k180° (k ℤ)

x = 1,5 + 7,5° + k90° (k ℤ).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ t (ở đây t là số ngày tính từ ngày 1 tháng giêng) của một năm không nhuận được mô hình hóa bởi hàm số

\(L\left( t \right) = 12 + 2,83\sin \left( {\frac{{2\pi }}{{365}}\left( {t - 80} \right)} \right)\) với t ℤ và 0 < t ≤ 365.

a) Vào ngày nào trong năm thì thành phố A có ít giờ ánh sáng mặt trời nhất?

b) Vào ngày nào trong năm thì thành phố A có nhiều giờ ánh sáng mặt trời nhất?

c) Vào ngày nào trong năm thì thành phố A có khoảng 10 giờ ánh sáng mặt trời?

Xem đáp án » 13/07/2024 32,110

Câu 2:

Giải các phương trình sau:

a) sin(2x + 15°) + cos(2x – 15°) = 0;

b) \(\cos \left( {2x + \frac{\pi }{5}} \right) + \cos \left( {3x - \frac{\pi }{6}} \right) = 0\);

c) tan x + cot x = 0;

d) sin x + tan x = 0.

Xem đáp án » 13/07/2024 7,153

Câu 3:

Giải các phương trình sau:

a) (2 + cos x)(3cos 2x – 1) = 0;

b) 2sin 2x – sin 4x = 0;

c) cos6 x – sin6 x = 0;

d) tan 2x cot x = 1. 

Xem đáp án » 13/07/2024 6,127

Câu 4:

Một chiếc guồng nước có dạng hình tròn bán kính 2,5 m; trục của nó đặt cách mặt nước 2 m (hình bên). Khi guồng quay đều, khoảng cách h (mét) tính từ một chiếc gầu gắn tại điểm A trên guồng đến mặt nước là h = |y| trong đó

\(y = 2 + 2,5\sin 2\pi \left( {x - \frac{1}{4}} \right)\)

với x là thời gian quay của guồng (x ≥ 0), tính bằng phút; ta quy ước rằng y > 0 khi gầu ở trên mặt nước và y < 0 khi gầu ở dưới mặt nước.

a) Khi nào chiếc gầu ở vị trí cao nhất? Thấp nhất?

b) Chiếc gầu cách mặt nước 2 mét lần đầu tiên khi nào?

Media VietJack

Xem đáp án » 13/07/2024 4,162

Câu 5:

Tìm các giá trị của x để giá trị tương ứng của các hàm số sau bằng nhau:

a) \(y = \cos \left( {2x - \frac{\pi }{3}} \right)\) và \(y = \cos \left( {x - \frac{\pi }{4}} \right)\);

b) \(y = \sin \left( {3x - \frac{\pi }{4}} \right)\) và \(y = \sin \left( {x - \frac{\pi }{6}} \right)\).

Xem đáp án » 13/07/2024 2,370

Bình luận


Bình luận