Câu hỏi:
13/07/2024 2,737
Chứng minh rằng:
a) Trong một cấp số cộng (un), mỗi số hạng (trừ số hạng đầu và số hạng cuối, nếu có) đều là trung bình cộng của hai số hạng đứng kề với nó, nghĩa là
\({u_k} = \frac{{{u_{k - 1}} + {u_{k + 1}}}}{2}\) với k ≥ 2.
b) Trong một cấp số nhân, bình phương của mỗi số hạng (trừ số hạng đầu và số hạng cuối, nếu có) đều là tích của hai số hạng đứng kề với nó, nghĩa là
\(u_k^2 = {u_{k - 1}}.{u_{k + 1}}\) với k ≥ 2.
Chứng minh rằng:
a) Trong một cấp số cộng (un), mỗi số hạng (trừ số hạng đầu và số hạng cuối, nếu có) đều là trung bình cộng của hai số hạng đứng kề với nó, nghĩa là
\({u_k} = \frac{{{u_{k - 1}} + {u_{k + 1}}}}{2}\) với k ≥ 2.
b) Trong một cấp số nhân, bình phương của mỗi số hạng (trừ số hạng đầu và số hạng cuối, nếu có) đều là tích của hai số hạng đứng kề với nó, nghĩa là
\(u_k^2 = {u_{k - 1}}.{u_{k + 1}}\) với k ≥ 2.
Câu hỏi trong đề: Giải SGK Toán 11 KNTT Bài tập cuối chương II có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
a) Giả sử (un) là cấp số cộng với công sai d. Khi đó với k ≥ 2, ta có:
uk – 1 = uk – d và uk + 1 = uk + d.
Suy ra uk – 1 + uk + 1 = (uk – d) + (uk + d) = 2uk hay \({u_k} = \frac{{{u_{k - 1}} + {u_{k + 1}}}}{2}\) (đpcm).
b) Giả sử cấp số nhân có công bội là q. Khi đó với k ≥ 2, ta có:
uk – 1 = u1 . qk – 1 – 1 = u1 . qk – 2;
uk + 1 = u1 . qk + 1 – 1 = u1 . qk.
Suy ra uk – 1 . uk + 1 = (u1 . qk – 2) . (u1 . qk) = \(u_1^2.{q^{k - 2 + k}} = u_1^2.{q^{2k - 2}}\) = (u1 . qk – 1)2 = \(u_k^2\) (đpcm).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Vì ban đầu có một tế bào và mỗi lần một tế bào phân chia thành hai tế bào nên ta có cấp số nhân với u1 = 1, q = 2.
Vì cứ 20 phút lại phân đôi một lần nên sau 24 giờ sẽ có 24 . 60 : 20 = 72 lần phân chia tế bào và u73 là số tế bào nhận đươc sau 24 giờ.
Vậy số tế bào nhận được sau 24 giờ phân chia là
u73 = u1 . q73 – 1 = 1 . 273 – 1 = 272 (tế bào).
Lời giải
Lời giải:
+ Chia lần 1: Hình vuông màu vàng lớn có cạnh bằng 1 đơn vị thì có diện tích bằng 1 (đvdt). Chia hình vuông này thành 9 hình vuông nhỏ hơn và hình vuông ở chính giữa được tô màu xanh, thì hình vuông màu xanh đầu tiên này có diện tích bằng \(\frac{1}{9}\) (đvdt).
+ Chia lần 2: 8 hình vuông màu vàng còn lại, mỗi hình vuông này lại được chia thành 9 hình vuông con và tiếp tục tô xanh hình vuông chính giữa, khi đó mỗi hình vuông xanh nhỏ hơn có diện tích S1 = \(\frac{1}{9} \cdot \frac{1}{9} = \frac{1}{{{9^2}}}\), 8 hình vuông xanh nhỏ hơn có diện tích bằng 8S1.
Cứ tiếp tục như vậy, mỗi lần chia ta sẽ tạo thành 8 hình vuông xanh nhỏ hơn tiếp đối với mỗi ô vuông vàng nhỏ.
Do đó, quá trình này được tiếp tục lặp lại năm lần, thì trừ lần đầu tiên, 4 lần sau, mỗi lần chia diện tích ô vuông xanh tạo thành lập thành một cấp số nhân có u1 = \(8.\frac{1}{{{9^2}}}\) và công bội \(q = 8.\frac{1}{9}\).
Vậy tổng diện tích các hình vuông được tô màu xanh là
S = \(\frac{1}{9} + \frac{{8.\frac{1}{{{9^2}}}\left( {1 - {{\left( {\frac{8}{9}} \right)}^4}} \right)}}{{1 - \frac{8}{9}}} = \frac{{26\,\,281}}{{59\,\,049}}\) (đvdt).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.