Cho dãy số (un) với un = 3n + 6. Khẳng định nào sau đây là đúng?
A. Dãy số (un) là cấp số cộng với công sai d = 3.
B. Dãy số (un) là cấp số cộng với công sai d = 6.
C. Dãy số (un) là cấp số nhân với công bội q = 3.
D. Dãy số (un) là cấp số nhân với công bội q = 6.
Cho dãy số (un) với un = 3n + 6. Khẳng định nào sau đây là đúng?
A. Dãy số (un) là cấp số cộng với công sai d = 3.
B. Dãy số (un) là cấp số cộng với công sai d = 6.
C. Dãy số (un) là cấp số nhân với công bội q = 3.
D. Dãy số (un) là cấp số nhân với công bội q = 6.
Câu hỏi trong đề: Giải SGK Toán 11 KNTT Bài tập cuối chương II có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
Đáp án đúng là: A
Ta có: un – un – 1 = (3n + 6) – [3(n – 1) + 6] = 3n + 6 – (3n – 3 + 6) = 3, với mọi n ≥ 2.
Do đó, (un) là cấp số cộng có công sai d = 3.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Vì ban đầu có một tế bào và mỗi lần một tế bào phân chia thành hai tế bào nên ta có cấp số nhân với u1 = 1, q = 2.
Vì cứ 20 phút lại phân đôi một lần nên sau 24 giờ sẽ có 24 . 60 : 20 = 72 lần phân chia tế bào và u73 là số tế bào nhận đươc sau 24 giờ.
Vậy số tế bào nhận được sau 24 giờ phân chia là
u73 = u1 . q73 – 1 = 1 . 273 – 1 = 272 (tế bào).
Lời giải
Lời giải:
+ Chia lần 1: Hình vuông màu vàng lớn có cạnh bằng 1 đơn vị thì có diện tích bằng 1 (đvdt). Chia hình vuông này thành 9 hình vuông nhỏ hơn và hình vuông ở chính giữa được tô màu xanh, thì hình vuông màu xanh đầu tiên này có diện tích bằng \(\frac{1}{9}\) (đvdt).
+ Chia lần 2: 8 hình vuông màu vàng còn lại, mỗi hình vuông này lại được chia thành 9 hình vuông con và tiếp tục tô xanh hình vuông chính giữa, khi đó mỗi hình vuông xanh nhỏ hơn có diện tích S1 = \(\frac{1}{9} \cdot \frac{1}{9} = \frac{1}{{{9^2}}}\), 8 hình vuông xanh nhỏ hơn có diện tích bằng 8S1.
Cứ tiếp tục như vậy, mỗi lần chia ta sẽ tạo thành 8 hình vuông xanh nhỏ hơn tiếp đối với mỗi ô vuông vàng nhỏ.
Do đó, quá trình này được tiếp tục lặp lại năm lần, thì trừ lần đầu tiên, 4 lần sau, mỗi lần chia diện tích ô vuông xanh tạo thành lập thành một cấp số nhân có u1 = \(8.\frac{1}{{{9^2}}}\) và công bội \(q = 8.\frac{1}{9}\).
Vậy tổng diện tích các hình vuông được tô màu xanh là
S = \(\frac{1}{9} + \frac{{8.\frac{1}{{{9^2}}}\left( {1 - {{\left( {\frac{8}{9}} \right)}^4}} \right)}}{{1 - \frac{8}{9}}} = \frac{{26\,\,281}}{{59\,\,049}}\) (đvdt).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.