Câu hỏi:
12/07/2024 1,113
Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M, N, I là 3 điểm lấy trên AD, CD, SO. Xác định thiết diện của hình chóp với mặt phẳng (MNI).
Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M, N, I là 3 điểm lấy trên AD, CD, SO. Xác định thiết diện của hình chóp với mặt phẳng (MNI).
Quảng cáo
Trả lời:

Trong (ABCD) gọi
J = BD ∩ MN, K = MN ∩ AB, H = MN ∩ BC
Trong (SBC) gọi: P = QH ∩ SC
Trong (SBD) gọi: Q = IJ ∩ SB
Trong (SBC) gọi: R = KQ ∩ SA
Suy ra, thiết diện là ngũ giác MNPQR.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Nghiệm kép là nghiệm của phương trình bậc hai một ẩn.
Phương trình bậc hai một ẩn (hay gọi tắt là phương trình bậc hai) là phương trình có dạng: ax2 + bx + c = 0 (a ≠ 0)
Trong đó a, b, c là các số thực cho trước, x là ẩn số.
Phương trình có nghiệm kép khi Δ = 0.
Lời giải
Ta có: \(\widehat {CBA} = \widehat {CBE} + \widehat {EBA} = 90^\circ + 15^\circ = 105^\circ \)
\(\widehat {BAC} = \widehat {BAD} - \widehat {CAD} = 90^\circ - 35^\circ = 55^\circ \)
Suy ra: \(\widehat {BCA} = 180^\circ - 55^\circ - 105^\circ = 20^\circ \)
Áp dụng định lý hàm sin cho tam giác CBA ta có:
\(\frac{{AB}}{{\sin \widehat {BCA}}} = \frac{{AC}}{{\sin \widehat {CBA}}}\)
Suy ra: \(AC = \frac{{AB.\sin \widehat {CBA}}}{{\sin \widehat {BCA}}} = \frac{{60.\sin 105^\circ }}{{\sin 20^\circ }} = 169,4506909\left( m \right)\)
Xét tam giác CAD vuông tại D ta có: CD = \(AC.\sin \widehat {CAD} \approx 97,193\left( m \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.