Câu hỏi:

12/07/2024 623

Một trường trung học phổ thông có 4 học sinh giỏi khối 12, có 5 học sinh giỏi khối 11, có 6 học sinh giỏi khối 10. Hỏi có bao nhiêu cách sắp xếp 15 học sinh trên thành một hàng ngang để đón đoàn đại biểu, nếu các học sinh ở cùng một khối thì xếp gần nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số cách sắp xếp học sinh ba khối 10, 11 và 12 là: 3!;

Số cách sắp xếp các học sinh giỏi khối 12 là: 4!;

Số cách sắp xếp các học sinh giỏi khối 11 là: 5!;

Số cách sắp xếp các học sinh giỏi khối 10 là: 6!;

Vậy số cách sắp xếp 15 học sinh thành hàng ngang để đón đại biểu là: 3!.4!.5!.6!

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Nghiệm kép là nghiệm của phương trình bậc hai một ẩn.

Phương trình bậc hai một ẩn (hay gọi tắt là phương trình bậc hai) là phương trình có dạng: ax2 + bx + c = 0 (a ≠ 0)

Trong đó a, b, c là các số thực cho trước, x là ẩn số.

Phương trình có nghiệm kép khi Δ = 0.

Lời giải

Ta có: \(\widehat {CBA} = \widehat {CBE} + \widehat {EBA} = 90^\circ + 15^\circ = 105^\circ \)

\(\widehat {BAC} = \widehat {BAD} - \widehat {CAD} = 90^\circ - 35^\circ = 55^\circ \)

Suy ra: \(\widehat {BCA} = 180^\circ - 55^\circ - 105^\circ = 20^\circ \)

Áp dụng định lý hàm sin cho tam giác CBA ta có:

\(\frac{{AB}}{{\sin \widehat {BCA}}} = \frac{{AC}}{{\sin \widehat {CBA}}}\)

Suy ra: \(AC = \frac{{AB.\sin \widehat {CBA}}}{{\sin \widehat {BCA}}} = \frac{{60.\sin 105^\circ }}{{\sin 20^\circ }} = 169,4506909\left( m \right)\)

Xét tam giác CAD vuông tại D ta có: CD = \(AC.\sin \widehat {CAD} \approx 97,193\left( m \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP