Câu hỏi:

12/07/2024 1,574

Cho hình vuông ABCD. Trên cạnh các AD, DC lần lượt lấy các điểm E, F sao cho AE = DF. Gọi M, N lần lượt là trung điểm của EF, BF.

a) Chứng minh các tam giác ADF và BAE bằng nhau.

b) Chứng minh MN vuông góc AF.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình vuông ABCD. Trên cạnh các AD, DC lần lượt lấy các điểm E, F sao cho AE  (ảnh 1)

a) Vì ABCD là hình vuông nên AB = AD

Xét DADF và DBAE có

AB = AD (chứng minh trên)

\(\widehat {BAE} = \widehat {ADF} = 90^\circ \)

AE = DF (giả thiết)

Suy ra ∆ADF = ∆BAE (c.g.c).

b) Vì ∆ADF = ∆BAE nên \[\widehat {FAD} = \widehat {EBA};\widehat {AFD} = \widehat {BEA}\] (các cặp góc tương ứng)

Gọi G là giao điểm của AF và BE

Xét tam giác AGE có

\(\widehat {AGE} + \left( {\widehat {AEG} + \widehat {GAE}} \right) = 180^\circ \)(tổng ba góc trong một tam giác)

Suy ra \(\widehat {AGE} + \left( {\widehat {AFD} + \widehat {FAD}} \right) = 180^\circ \)

Hay \(\widehat {AGE} + 90^\circ = 180^\circ \)

Suy ra \(\widehat {AGE} = 90^\circ \)

Do đó BE  AF

Xét tam giác EBF có M là trung điểm của EF, N là trung điểm của BF

Suy ra MN là đường trung bình của tam giác

Do đó MN // BE

Mà BE  AF (chứng minh trên)

Suy ra MN  AF

Vậy MN  AF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Nghiệm kép là nghiệm của phương trình bậc hai một ẩn.

Phương trình bậc hai một ẩn (hay gọi tắt là phương trình bậc hai) là phương trình có dạng: ax2 + bx + c = 0 (a ≠ 0)

Trong đó a, b, c là các số thực cho trước, x là ẩn số.

Phương trình có nghiệm kép khi Δ = 0.

Lời giải

Ta có: \(\widehat {CBA} = \widehat {CBE} + \widehat {EBA} = 90^\circ + 15^\circ = 105^\circ \)

\(\widehat {BAC} = \widehat {BAD} - \widehat {CAD} = 90^\circ - 35^\circ = 55^\circ \)

Suy ra: \(\widehat {BCA} = 180^\circ - 55^\circ - 105^\circ = 20^\circ \)

Áp dụng định lý hàm sin cho tam giác CBA ta có:

\(\frac{{AB}}{{\sin \widehat {BCA}}} = \frac{{AC}}{{\sin \widehat {CBA}}}\)

Suy ra: \(AC = \frac{{AB.\sin \widehat {CBA}}}{{\sin \widehat {BCA}}} = \frac{{60.\sin 105^\circ }}{{\sin 20^\circ }} = 169,4506909\left( m \right)\)

Xét tam giác CAD vuông tại D ta có: CD = \(AC.\sin \widehat {CAD} \approx 97,193\left( m \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP