Cho đường tròn tâm O. Từ điểm M nằm ngoài đường tròn, vẽ hai tiếp tuyến ME và MF sao cho góc EMO bằng 30 độ. Biết chu vi tam giác MEF là 30 cm. Tính:
a) Độ dài EF.
b) Diện tích tam giác MEF.
Cho đường tròn tâm O. Từ điểm M nằm ngoài đường tròn, vẽ hai tiếp tuyến ME và MF sao cho góc EMO bằng 30 độ. Biết chu vi tam giác MEF là 30 cm. Tính:
a) Độ dài EF.
b) Diện tích tam giác MEF.
Câu hỏi trong đề: 7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án !!
Quảng cáo
Trả lời:

a) Ta có: ME = MF (vì ME, MF là tiếp tuyến của (O))
MO là phân giác của \(\widehat {EMF}\)
Suy ra: \(\widehat {EMF} = 2\widehat {EMO} = 2.30^\circ = 60^\circ \)
Vậy tam giác EMF đều
Suy ra: EF = EM = MF
Mà EF + EM + MF = 30
Nên: EF = EM = MF = 10(cm)
b) Gọi OM giao EF tại H
Vì EMF là tam giác đều nên MH là trung trực EF
EH = \(\frac{1}{2}EF = \frac{1}{2}.10 = 5\left( {cm} \right)\)
\(MH = \sqrt {M{E^2} - E{H^2}} = 5\sqrt 3 \)
SMEF = \(\frac{1}{2}.MH.EF = \frac{1}{2}.5\sqrt 3 .10 = 25\sqrt 3 \left( {c{m^2}} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Nghiệm kép là nghiệm của phương trình bậc hai một ẩn.
Phương trình bậc hai một ẩn (hay gọi tắt là phương trình bậc hai) là phương trình có dạng: ax2 + bx + c = 0 (a ≠ 0)
Trong đó a, b, c là các số thực cho trước, x là ẩn số.
Phương trình có nghiệm kép khi Δ = 0.
Lời giải
Ta có: \(\widehat {CBA} = \widehat {CBE} + \widehat {EBA} = 90^\circ + 15^\circ = 105^\circ \)
\(\widehat {BAC} = \widehat {BAD} - \widehat {CAD} = 90^\circ - 35^\circ = 55^\circ \)
Suy ra: \(\widehat {BCA} = 180^\circ - 55^\circ - 105^\circ = 20^\circ \)
Áp dụng định lý hàm sin cho tam giác CBA ta có:
\(\frac{{AB}}{{\sin \widehat {BCA}}} = \frac{{AC}}{{\sin \widehat {CBA}}}\)
Suy ra: \(AC = \frac{{AB.\sin \widehat {CBA}}}{{\sin \widehat {BCA}}} = \frac{{60.\sin 105^\circ }}{{\sin 20^\circ }} = 169,4506909\left( m \right)\)
Xét tam giác CAD vuông tại D ta có: CD = \(AC.\sin \widehat {CAD} \approx 97,193\left( m \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.