Câu hỏi:
12/07/2024 466Bác Ngọc thực hiện chế độ ăn kiêng với yêu cầu tối thiểu hằng ngày qua thức uống là 300 ca – lo, 36 đơn vị vitamin A và 90 đơn vị vitamin C. Một cốc đồ uống ăn kiêng thứ nhất cung cấp 60 ca – lo, 12 đơn vị vitamin A và 10 đơn vị vitamin C. Một cốc đồ uống ăn kiêng thứ hai cung cấp 60 ca – lo, 6 đơn vị vitamin A và 30 đơn vị vitamin C.
a) Viết hệ bất phương trình mô tả số lượng cốc cho đồ uống thứ nhất và thứ hai mà bác Ngọc nên uống mỗi ngày để đáp ứng nhu cầu cần thiết đối với số ca – lo và số đơn vị vitamin hấp thụ.
b) Chỉ ra hai phương án mà bác Ngọc có thể chọn lựa số lượng cốc cho đồ uống thứ nhất và thứ hai nhằm đáp ứng nhu cầu cần thiết đối với số ca – lo và số đơn vị vitamin hấp thụ.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Gọi x, y lần lượt là số lượng cốc đồ uống thứ nhất và thứ hai mà bác Ngọc nên uống mỗi ngày để đáp ứng nhu cầu cần thiết đối với số ca – lo và số đơn vị vitamin hấp thụ (điều kiện x, y ∈ ℕ).
Tổng số ca – lo mà x cốc thứ nhất và y cốc thứ hai cung cấp là: 60x + 60y (ca – lo).
Tổng số đơn vị vitamin A mà x cốc thứ nhất và y cốc thứ hai cung cấp là: 12x + 6y (đơn vị).
Tổng số đơn vị vitamin C mà x cốc thứ nhất và y cốc thứ hai cung cấp là: 10x + 30y (đơn vị).
Vì tối thiểu hằng ngày cần 300 ca – lo, 36 đơn vị vitamin A và 90 đơn vị vitamin C.
Nên ta có hệ bất phương trình sau: \(\left\{ \begin{array}{l}60x + 60y \ge 300\\12x + 6y \ge 36\\10x + 30y \ge 90\end{array} \right.\)
⇔ \(\left\{ \begin{array}{l}x + y \ge 5\\2x + y \ge 6\\x + 3y \ge 9\end{array} \right.\)(I).
b) Số cốc cho đồ uống thứ nhất và thứ hai thỏa mãn yêu cầu bài toán là nghiệm của hệ (I).
+ Phương án 1: Chọn x = 1, y = 4, thay vào từng bất phương trình của hệ:
1 + 4 ≥ 5 là mệnh đề đúng;
2 . 1 + 4 ≥ 6 là mệnh đề đúng;
1 + 3. 4 ≥ 9 là mệnh đề đúng.
Vậy (1; 4) là nghiệm chung của các bất phương trình của hệ nên (1; 4) là nghiệm của hệ (I).
Do đó, bác Ngọc có thể chọn 1 cốc thứ nhất và 4 cốc thứ hai.
+ Phương án 2: Chọn x = 3, y = 4, thay vào từng bất phương trình của hệ:
3 + 4 ≥ 5 là mệnh đề đúng;
2 . 3 + 4 ≥ 6 là mệnh đề đúng;
3 + 3 . 4 ≥ 9 là mệnh đề đúng.
Vậy (3; 4) là nghiệm chung của các bất phương trình của hệ nên (3; 4) là nghiệm của hệ (I).
Do đó, bác Ngọc có thể chọn 3 cốc thứ nhất và 4 cốc thứ hai.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Bạn An kinh doanh hai mặt hàng handmade là vòng tay và vòng đeo cổ. Mỗi vòng tay làm trong 4 giờ, bán được 40 ngàn đồng. Mỗi vòng đeo cổ làm trong 6 giờ, bán được 80 ngàn đồng. Mỗi tuần bạn An bán được không quá 15 vòng tay và 4 vòng đeo cổ. Tính số giờ tối thiểu trong tuần An cần dùng để bán được ít nhất 400 ngàn đồng?
Câu 3:
Một người quan sát đỉnh của một ngọn núi nhân tạo từ hai vị trí khác nhau của tòa nhà. Lần đầu tiên người đó quan sát đỉnh núi từ tầng trệt với phương nhìn tạo với phương nằm ngang và lần thứ hai người này quan sát tại sân thượng của cùng tòa nhà đó với phương nằm ngang (như hình vẽ). Tính chiều cao ngọn núi biết rằng tòa nhà cao 60 m.
Câu 4:
Trong các phát biểu sau, phát biểu nào là mệnh đề toán học?
a) Tích hai số thực trái dấu là một số thực âm.
b) Mọi số tự nhiên đều là dương.
c) Có sự sống ngoài Trái Đất
d) Ngày 1 tháng 5 là ngày Quốc tế Lao động.
Câu 5:
Cho tam giác ABC vuông tại A, AC = b, AB = c. Lấy điểm M trên cạnh BC sao cho \(\widehat {BAM} = 30^\circ \).Tính tỉ số \(\frac{{MB}}{{MC}}\).
Câu 6:
Tìm tất cả giá trị của b để hàm số y = x2 + 2(b + 6)x + 4 đồng biến trong khoảng (6; +∞).
Câu 7:
về câu hỏi!