Câu hỏi:
20/09/2023 955Cho hình hộp ABCD.A'B'CD' có tất cả các cạnh đều bằng 1 và các góc phẳng đỉnh A đều bằng 60°. Tính khoảng cách giữa hai đường thẳng AB' và A'C'
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có \(\widehat {BAA'} = \widehat {DAA'} = \widehat {BAD} = {60^ \circ }\) và AB = AD = AA’.
Khi đó ∆ABD, ∆ADA’ và ∆ABA’ và ∆ABA’ đều cạnh bằng 1 .
⇒ A’D = A’A = A’B = 1. Suy ra hình chiếu của A’ lên (ABCD) là tâm H của ∆ABD đều.
Ta có AB’ // DC’ ⇒ d(AB’; A’C’) = d(AB’; (DA’C’)) = d(H; (DA’C’)).
Dựng hình bình hành DCAJ. Từ H kẻ HK ⊥ DJ (K ∈ DJ), ta có HK // DB.
Từ H kẻ HL ⊥ A’K (L ∈ A’K) ⇒ HL ⊥ (DA’C’) ⇒ d(H; (DA’C’)) = HL.
Ta có: \(HK = \frac{1}{2},A'H = \sqrt {1 - {{\left( {\frac{{\sqrt 3 }}{3}} \right)}^2}} = \frac{{\sqrt 6 }}{3}\).
Xét tam giác \(A'HK:\frac{1}{{H{L^2}}} = \frac{1}{{H{K^2}}} + \frac{1}{{A'{H^2}}} \Rightarrow HL = \frac{{\sqrt {22} }}{{11}}\).
Đáp án cần chọn là: A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Nước ta có diện tích 331212 km2, dân cư 90 triệu dân. Vậy mật độ dân số nước ta là:
Câu 2:
Trong một môn học, Thầy giáo có 30 câu hỏi khác nhau gồm 5 câu khó, 10 câu trung bình và 15 câu dễ. Từ 30 câu hỏi đó có thể lập được bao nhiêu đề kiểm tra, mỗi đề gồm 5 câu hỏi khác nhau, sao cho trong mỗi đề nhất thiết phải có đủ cả 3 câu (khó, dễ, trung bình) và số câu dễ không ít hơn 2 ?
Câu 3:
Có 3 bông hồng vàng, 3 bông hồng trắng và 4 bông hồng đỏ ( các bông hoa xem như đôi 1 khác nhau) người ta muốn chọn ra một bó hoa gồm 7 bông. Có bao nhiêu cách chọn các bông hoa được chọn tuỳ ý.
Câu 5:
Giá trị nhỏ nhất của biết thức F = y - x trên miền xác định bởi hệ \[\left\{ \begin{array}{l}y - 2x \le 2\\2y - x \ge 4\\x + y \le 5\end{array} \right.\] là:
Câu 6:
Trong hệ tọa độ Oxy, cho tam giác ABC có M(2; 3); N(0; -4); P(-1; 6) lần lượt là trung điểm của các cạnh BC; CA; AB. Tìm tọa độ đỉnh A?
về câu hỏi!