Câu hỏi:

13/07/2024 12,921

Một chất điểm dao động điều hoà. Biết khoảng thời gian giữa năm lần liên tiếp động năng của chất điểm bằng thế năng của hệ là \(0,4{\rm{\;s}}\). Tần số của dao động của chất điểm là

A. \(2,5{\rm{\;Hz}}\).   

B. \(3,125{\rm{\;Hz}}\).

C. \(5{\rm{\;Hz}}\).      

D. \(6,25{\rm{\;Hz}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là A

Thời gian giữa năm lần liên tiếp động năng bằng thế năng là:

\(4 \cdot \frac{T}{4} = 0,4 \Rightarrow T = 0,4{\rm{\;s}} \Rightarrow f = \frac{1}{{0,4}} = 2,5{\rm{\;Hz}}\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\frac{{{F_{{\rm{max}}}}}}{{{F_{{\rm{min}}}}}} = \frac{{k\left( {{\rm{\Delta }}{l_0} + A} \right)}}{{k\left( {{\rm{\Delta }}{l_0} - A} \right)}} = \frac{7}{3} \Rightarrow 3\left( {{\rm{\Delta }}{l_0} + A} \right) = 7\left( {{\rm{\Delta }}{l_0} - A} \right)\)\( \Rightarrow {\rm{\Delta }}{l_0} = 2,5{\rm{\;A}} = 25{\rm{\;cm}} = 0,25{\rm{\;m}}\).

Với \({\rm{\Delta }}{l_0}\) là độ dãn của lò xo tại vị trí cân bằng.

\(\omega = \sqrt {\frac{g}{{{\rm{\Delta }}{l_0}}}} = \sqrt {\frac{{10}}{{0,25}}} = 2\pi \left( {{\rm{rad}}/{\rm{s}}} \right) \Rightarrow f = \frac{\omega }{{2\pi }} = 1{\rm{\;Hz}}\).

Lời giải

Gọi \({\rm{\Delta }}{l_0}\) là độ dãn của lò xo tại vị trí cân bằng, ta có: \({\rm{\Delta }}{l_0} = 2,5{\rm{\;cm}} = 0,025{\rm{\;m}}\).

Tại vị trí cân bằng: \({\rm{k}} \cdot {\rm{\Delta }}{l_0} = {\rm{mg}} \Rightarrow {\rm{k}} = \frac{{{\rm{mg}}}}{{{\rm{\Delta }}{l_0}}} = \frac{{0,1 \cdot 10}}{{0,025}} = 40{\rm{\;N/m}}\).

\(\omega = \sqrt {\frac{k}{m}} = \sqrt {\frac{{40}}{{0,1}}} = 20{\rm{rad/s}}\).

Theo đề bài, khi \({\rm{t}} = 0\) thì \({\rm{x}} = - 2{\rm{\;cm}}\)\({\rm{v}} = - 40\sqrt 3 {\rm{\;cm/s}}\)

\( \Rightarrow A = \sqrt {{x^2} + \frac{{{v^2}}}{{{\omega ^2}}}} = \sqrt {{{( - 2)}^2} + \frac{{{{(40\sqrt 3 )}^2}}}{{{{(20)}^2}}}} = 4{\rm{\;cm}}\).

Vậy tại thời điểm \(t = 0\) thì \(x = - 2\,cm = - \frac{A}{2}\)\(v < 0\), nên \(\varphi = \frac{{2\pi }}{3}\), phương trình dao động là: \(x = 4{\rm{cos}}\left( {20t + \frac{{2\pi }}{3}} \right)\left( {{\rm{cm}}} \right)\)

Cơ năng của dao động: \(W = \frac{1}{2}m{\omega ^2}{A^2} = \frac{1}{2} \cdot 0,1{(20)^2}{(0,04)^2} = 0,032{\rm{\;J}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay