Một con lắc lò xo treo thẳng đứng vào điểm I cố định, quả cầu có khối lượng \(100{\rm{\;g}}\). Con lắc dao động điều hoà theo phương trình \({\rm{x}} = 4{\rm{cos}}10\sqrt {5{\rm{t}}} \left( {{\rm{cm}}} \right)\) với \({\rm{t}}\) tính theo giây. Lấy \({\rm{g}} = 10{\rm{\;m}}/{{\rm{s}}^2}\). Tính độ lớn lực đàn hồi lớn nhất và nhỏ nhất do lò xo tác dụng lên điểm I.
Một con lắc lò xo treo thẳng đứng vào điểm I cố định, quả cầu có khối lượng \(100{\rm{\;g}}\). Con lắc dao động điều hoà theo phương trình \({\rm{x}} = 4{\rm{cos}}10\sqrt {5{\rm{t}}} \left( {{\rm{cm}}} \right)\) với \({\rm{t}}\) tính theo giây. Lấy \({\rm{g}} = 10{\rm{\;m}}/{{\rm{s}}^2}\). Tính độ lớn lực đàn hồi lớn nhất và nhỏ nhất do lò xo tác dụng lên điểm I.
Quảng cáo
Trả lời:
Độ dãn của lò xo khi vật ở vị trí cân bằng: \({\rm{\Delta }}{l_0} = \frac{{\rm{g}}}{{{\omega ^2}}} = \frac{{10}}{{500}} = 2{\rm{\;cm}}\).
Biên độ dao động \(A = 4{\rm{\;cm}}\).
Do \(A > {\rm{\Delta }}{l_0}\) nên \({F_{{\rm{min}}}} = 0\) (lúc lò xo không biến dạng).
Độ cứng của lò xo: \(k = \frac{{mg}}{{{\rm{\Delta }}{l_0}}} = \frac{{0,1 \cdot 10}}{{0,02}} = 50{\rm{\;N/m}}\).
Lực đàn hồi cực đại \({F_{{\rm{max}}}} = k\left( {{\rm{\Delta }}{l_0} + A} \right) = 50.0,06 = 3{\rm{\;N}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
Thời gian giữa năm lần liên tiếp động năng bằng thế năng là:
\(4 \cdot \frac{T}{4} = 0,4 \Rightarrow T = 0,4{\rm{\;s}} \Rightarrow f = \frac{1}{{0,4}} = 2,5{\rm{\;Hz}}\)
Lời giải
Gọi \({\rm{\Delta }}{l_0}\) là độ dãn của lò xo tại vị trí cân bằng, ta có: \({\rm{\Delta }}{l_0} = 2,5{\rm{\;cm}} = 0,025{\rm{\;m}}\).
Tại vị trí cân bằng: \({\rm{k}} \cdot {\rm{\Delta }}{l_0} = {\rm{mg}} \Rightarrow {\rm{k}} = \frac{{{\rm{mg}}}}{{{\rm{\Delta }}{l_0}}} = \frac{{0,1 \cdot 10}}{{0,025}} = 40{\rm{\;N/m}}\).
\(\omega = \sqrt {\frac{k}{m}} = \sqrt {\frac{{40}}{{0,1}}} = 20{\rm{rad/s}}\).
Theo đề bài, khi \({\rm{t}} = 0\) thì \({\rm{x}} = - 2{\rm{\;cm}}\) và \({\rm{v}} = - 40\sqrt 3 {\rm{\;cm/s}}\)
\( \Rightarrow A = \sqrt {{x^2} + \frac{{{v^2}}}{{{\omega ^2}}}} = \sqrt {{{( - 2)}^2} + \frac{{{{(40\sqrt 3 )}^2}}}{{{{(20)}^2}}}} = 4{\rm{\;cm}}\).
Vậy tại thời điểm \(t = 0\) thì \(x = - 2\,cm = - \frac{A}{2}\) và \(v < 0\), nên \(\varphi = \frac{{2\pi }}{3}\), phương trình dao động là: \(x = 4{\rm{cos}}\left( {20t + \frac{{2\pi }}{3}} \right)\left( {{\rm{cm}}} \right)\)
Cơ năng của dao động: \(W = \frac{1}{2}m{\omega ^2}{A^2} = \frac{1}{2} \cdot 0,1{(20)^2}{(0,04)^2} = 0,032{\rm{\;J}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.