Câu hỏi:
11/07/2024 40,181Để nghiên cứu xác suất của một loại cây trồng mới phát triển bình thường, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm A, B khác nhau. Xác suất phát triển bình thường của hạt giống đó trên các lô đất A, B lần lượt là 0,7 và 0,6. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng, tính xác suất hạt giống chỉ phát triển bình thường trên một lô đất.
Quảng cáo
Trả lời:
− Xét các biến cố:
A: “Hạt giống phát triển bình thường trên lô đất thí nghiệm A”;
B: “Hạt giống phát triển bình thường trên lô đất thí nghiệm B”;
Từ giả thiết ta thấy A, B là hai biến cố độc lập và P(A) = 0,7; P(B) = 0,6.
Xét các biến cố đối:
“Hạt giống không phát triển bình thường trên lô đất thí nghiệm A”;
“Hạt giống không phát triển bình thường trên lô đất thí nghiệm B”.
Ta có
− Xét các biến cố:
H: “Hạt giống chỉ phát triển bình thường trên một lô đất”.
H1: “Hạt giống phát triển bình thường trên lô đất A và không phát triển bình thường trên lô đất B”
H2: “Hạt giống phát triển bình thường trên lô đất B và không phát triển bình thường trên lô đất A”
⦁ Ta thấy A, là hai biến cố độc lập và
Nên
⦁ Ta thấy B, là hai biến cố độc lập và
Nên
⦁ Ta thấy H = H1 ∪ H2, mà H1, H2 là hai biến cố xung khắc
Nên P(H) = P(H1 ∪ H2) = P(H1) + P(H2) = 0,28 + 0,18 = 0,46.
Vậy xác suất hạt giống chỉ phát triển bình thường trên một lô đất bằng 0,46.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
− Mỗi cách chọn ra đồng thởi 2 quả cầu từ hộp chứa 9 quả cầu cho ta một tổ hợp chập 2 của 9 phần tử. Do đó, không gian mẫu Ω gồm các tổ hợp chập 2 của 9 phần tử và
− Xét biến cố A: “Chọn được 2 quả cầu vừa khác màu vừa khác số”.
+ Chọn 2 quả cầu khác màu:
⦁ 1 quả màu xanh và 1 quả màu vàng có cách chọn;
⦁ 1 quả màu xanh và 1 quả màu đỏ có cách chọn;
⦁ 1 quả màu vàng và 1 quả màu đỏ có cách chọn.
Do đó số cách chọn 2 quả cầu khác màu là: 12 + 8 + 6 = 26 cách chọn.
+ Trong 26 cách chọn 2 quả cầu khác màu trên thì sẽ có 2 trường hợp đối với 2 quả cầu đó là khác số hoặc cùng số.
Xét các trường hợp 2 quả cầu khác màu cùng số:
⦁ 2 quả cầu cùng số 1: cách chọn;
⦁ 2 quả cầu cùng số 2: cách chọn;
⦁ 2 quả cầu cùng số 3: cách chọn.
Do đó số cách lấy ra 2 quả cầu khác màu cùng số là 3 + 3 + 1 = 7 cách.
Suy ra số cách lấy ra 2 quả cầu khác màu khác số là 26 – 7 = 19 cách, tức là n(A) = 19.
Vậy xác suất để lấy ra 2 quả cầu khác màu khác số là
Lời giải
Đáp án đúng là: B
Số phần tử của mẫu là: n = 40. Ta có
Mà 9 < 20 < 32 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20.
Xét nhóm 3 là nhóm [70; 80) có r = 70, d = 10, n3 = 23 và nhóm 2 là nhóm [60; 70) có cf2 = 9.
Áp dụng công thức, ta có trung vị của mẫu số liệu là:
(điểm).
Giá trị 74,78 gần nhất với giá trị 75.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
10 Bài tập Biểu diễn góc lượng giác trên đường tròn lượng giác (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
33 câu trắc nghiệm Toán 11 Kết nối tri thức Bài 29: Công thức cộng xác suất có đáp án