Câu hỏi:

13/07/2024 18,692

Gieo một xúc xắc 30 lần liên tiếp, ghi lại mặt xuất hiện của xúc xắc sau mỗi lần gieo. Tính xác suất thực nghiệm của mỗi biến cố sau:

a) Mặt xuất hiện của xúc xắc là mặt 3 chấm.

b) Mặt xuất hiện của xúc xắc là mặt 4 chấm

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ghi lại số chấm xuất hiện ở mỗi lần gieo ta được kết quả như sau:

Số chấm

1

2

3

4

5

6

Số lần xuất hiện

5

11

6

2

4

2

Chú ý: Kết quả được ghi lại ở trên là ngẫu nhiên.

a) Xác suất thực nghiệm của biến cố Mặt xuất hiện của xúc xắc là mặt 3 chấm là: 630=15.

b) Xác suất thực nghiệm của biến cố Mặt xuất hiện của xúc xắc là mặt 4 chấm là: 430=215.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tập hợp các kết quả có thể xảy ra đối với số được ghi trên thẻ khi lấy ngẫu nhiên một chiếc thẻ trong hộp là A = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10}.

Tập hợp A có 10 phần tử.

a) Ghi lại số của thẻ lấy ra sau 30 lần rút thẻ liên tiếp, ta được kết quả như sau:

Số ghi trên thẻ

1

2

3

4

5

6

7

8

9

10

Số lần xuất hiện

5

4

6

2

1

0

2

3

5

2

Chú ý: Kết quả được ghi lại ở trên là ngẫu nhiên.

Xác suất thực nghiệm của biến cố “Thẻ rút ra ghi số 1 là 530=16.

Xác suất thực nghiệm của biến cố “Thẻ rút ra ghi số 5 là 130.

Xác suất thực nghiệm của biến cố “Thẻ rút ra ghi số 10 là 230=115.

b) Các kết quả thuận lợi cho biến cố Thẻ rút ra ghi số chia hết cho 3 là 3; 6; 9. Do đó, có 3 kết quả thuận lợi với biến cố đó.

Vì vậy, xác suất của biến cố Thẻ rút ra ghi số chia hết cho 3 là 310

Vậy, khi số lần rút thẻ ngày càng lớn thì xác suất thực nghiệm của biến cố Thẻ rút ra ghi số chia hết cho 3 ngày càng gần với 310

Lời giải

a) Xác suất thực nghiệm của biến cố Mặt xuất hiện của đồng xu là mặt S là: 2750.

b) Khi tung đồng xu 45 lần liên tiếp, do mặt N xuất hiện 24 lần nên số lần mặt S xuất hiện là 45 – 24 = 21 lần.

Do đó, xác suất thực nghiệm của biến cố Mặt xuất hiện của đồng xu là mặt S là: 2150.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay