Cho tứ diện ABCD có P, Q lần lượt là trọng tâm của tam giác ABC và BCD. Giao tuyến của mặt phẳng (ABQ) và mặt phẳng (DCP) là đường thẳng d. Khẳng định nào dưới đây đúng?
A. d đi qua trung điểm hai cạnh AB và CD.
B. d đi qua trung điểm hai cạnh AB và AD.
C. d là đường thẳng PQ.
D. d là đường thẳng QA.
Cho tứ diện ABCD có P, Q lần lượt là trọng tâm của tam giác ABC và BCD. Giao tuyến của mặt phẳng (ABQ) và mặt phẳng (DCP) là đường thẳng d. Khẳng định nào dưới đây đúng?
A. d đi qua trung điểm hai cạnh AB và CD.
B. d đi qua trung điểm hai cạnh AB và AD.
C. d là đường thẳng PQ.
D. d là đường thẳng QA.
Quảng cáo
Trả lời:
Đáp án đúng là: A

Gọi M, N lần lượt là trung điểm của AB, CD.
Ta có M ∈ AB mà AB ⊂ (ABQ), nên M ∈ (ABQ) (1)
Khi đó đường trung tuyến CM đi qua trọng tâm P của của ∆ABC.
Do đó mặt phẳng (DCP) chính là mặt phẳng (DCM), nên M ∈ (DCP) (2)
Từ (1) và (2) suy ra M ∈ (ABQ) ∩ (DCP).
Tương tự ta cũng có N ∈ (ABQ) ∩ (DCP).
Suy ra (ABQ) ∩ (DCP) = MN.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Xét ∆SAC có M và N lần lượt là trung điểm của SA và SC nên MN là đường trung bình của tam giác
Do đó MN // AC
Mà AC ⊂ (ABCD) nên MN // (ABCD).
Lời giải
Đáp án đúng là: B
⦁ a // b, a // (P) thì b // (P) hoặc b ⊂ (P);
⦁ a // b, a cắt (P) thì b cắt (P);
⦁ a // b, a ⊂ (P) thì b // (P) hoặc b ⊂ (P).
Vậy ta chọn phương án B.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.