Câu hỏi:

11/07/2024 628

Cho hình bình hành ABCD. Từ các đỉnh A, B, CD lần lượt kẻ các tia Ax, By, CzDt song song với nhau và không nằm trong mặt phẳng (ABCD). Chứng minh mặt phẳng (Ax, By) song song với mặt phẳng (Cz, Dt).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD. Từ các đỉnh A, B, C và D lần lượt kẻ các tia Ax, By, Cz và Dt song song với nhau và không nằm trong mặt phẳng (ABCD). Chứng minh mặt phẳng (Ax, By) song song với mặt phẳng (Cz, Dt). (ảnh 1)

Ta có Cz // By nên Cz // (Ax, By).

Do tứ giác ABCD là hình bình hành nên CD // AB do đó CD // (Ax, By).

Khi đó Cz // (Ax, By);

            CD // (Ax, By);

            Cz (Cz, Dt), CD (Cz, Dt) và Cz CD = C.

Do đó (Cz, Dt) // (Ax, By).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp tứ giác S.ABCD. Gọi M và N lần lượt là trung điểm của SA và SC. Khẳng định nào sau đây đúng? A. MN // (ABCD). B. MN // (SAB). C. MN // (SAD). D. MN // (SCD). (ảnh 1)

Xét ∆SAC có MN lần lượt là trung điểm của SASC nên MN là đường trung bình của tam giác

Do đó MN // AC

Mà AC (ABCD) nên MN // (ABCD).

Lời giải

Đáp án đúng là: B

a // b, a // (P) thì b // (P) hoặc b (P);

a // b, a cắt (P) thì b cắt (P);

a // b, a (P) thì b // (P) hoặc b (P).

Vậy ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP